NMTC 2015

Algebra Level 4

a , b , c , d , e a,b,c,d,e are real numbers such that
a + 4 b + 9 c + 16 d + 25 e = 1 a+4b+9c+16d+25e=1
4 a + 9 b + 16 c + 25 d + 36 e = 8 4a+9b+16c+25d+36e=8
9 a + 16 b + 25 c + 36 d + 49 e = 23 9a+16b+25c+36d+49e=23 .
Then the value of a + b + c + d + e a+b+c+d+e is

Source: NMTC 2015 Inter Level.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Otto Bretscher
Aug 28, 2015

Taking (half of first equation) - (second equation) + (half of last equation) gives a + b + c + d + e = 1 2 8 + 23 2 = 4 a+b+c+d+e=\frac{1}{2}-8+\frac{23}{2}=4 .

Hi sir! @Otto Bretscher Is there any basis on your formula? can we always rely on that shortcut? thanks!

Vincent Jason Torres - 5 years, 9 months ago

Log in to reply

Yes, there is a simple algebraic basis to this: If x , y , z x,y,z are consecutive squares (such as 4,9,16 or 25,36,49), then x 2 y + z = 2 x-2y+z=2 .

Otto Bretscher - 5 years, 4 months ago

@Vincent Jason Torres asked a great question. Comrade Otto, can you explain how you figure out what to add and what to subtract? Is it possible to generalize this?

Pi Han Goh - 5 years, 6 months ago

Log in to reply

i did same sir. i did α n 2 + β ( n + 1 ) 2 + γ ( n + 2 ) 2 = 1 \alpha n^2+\beta (n+1)^2+\gamma (n+2)^2=1 ( α + β + γ ) n 2 + ( 2 β + 4 γ ) n + ( β + 4 γ ) = 1 (\alpha+\beta+\gamma)n^2+(2\beta +4\gamma)n+(\beta+4\gamma)=1 { α + β + γ = 0 2 β + 4 γ = 0 β + 4 γ = 1 \begin{cases} \alpha+\beta+\gamma=0\\ 2\beta+4\gamma=0\\ \beta+4\gamma=1 \end{cases}
α = γ = . 5 , β = 1 \alpha=\gamma=.5,\beta=-1

Aareyan Manzoor - 5 years, 6 months ago

Log in to reply

@Aareyan Manzoor How did you get your very first equation?

Pi Han Goh - 5 years, 6 months ago

Log in to reply

@Pi Han Goh sir, the pattern is (for n =1) { n 2 a + ( n + 1 ) 2 b + . . ( n + 4 ) 2 e = 1 ( i ) ( n + 1 ) 2 a + ( n + 2 ) 2 b + . . ( n + 5 ) 2 e = 8 ( i i ) ( n + 2 ) 2 a + ( n + 3 ) 2 b + . . ( n + 6 ) 2 e = 23 ( i i i ) \begin{cases} n^2a+(n+1)^2b+..(n+4)^2 e=1--(i)\\ (n+1)^2a+(n+2)^2b+..(n+5)^2 e=8--(ii)\\ (n+2)^2a+(n+3)^2b+..(n+6)^2 e=23--(iii)\\ \end{cases} we want to have the coefficients=1. so, we need α ( i ) + β ( i i ) + γ ( i i i ) = ( α n 2 + β ( n + 1 ) 2 + γ ( n + 2 ) 2 ) a + ( α ( n + 1 ) 2 + β ( n + 2 ) 2 + γ ( n + 3 ) 2 ) b + . . . . ( α ( n + 4 ) 2 + β ( n + 5 ) 2 + γ ( n + 6 ) 2 ) e = a + b + c + d + e \alpha(i)+\beta(ii)+\gamma(iii)=(\alpha n^2+\beta (n+1)^2+\gamma(n+2)^2)a+(\alpha (n+1)^2+\beta (n+2)^2+\gamma(n+3)^2)b+....(\alpha (n+4)^2+\beta (n+5)^2+\gamma(n+6)^2)e=a+b+c+d+e α k 2 + β ( k + 1 ) 2 + γ ( k + 2 ) 2 = 1 \alpha k^2+\beta (k+1)^2+\gamma(k+2)^2=1 for k =n,n+1...,n+4

Aareyan Manzoor - 5 years, 6 months ago

Log in to reply

@Aareyan Manzoor Oh dang. I thought the solution poster have some magical technique. I see that it's just simple algebra.

Thank you very much! :D:D:D:D:D

Pi Han Goh - 5 years, 6 months ago
Aditya Kumar
Aug 26, 2015

Since 3 equations depend on 5 variables, values of any 2 variables can be assumed. I've assumed that d = e = 0 d=e=0 .

Therefore we get 3 equations of 3 variables:

  • a + 4 b + 9 c = 1 a+4b+9c=1

  • 4 a + 9 b + 16 c = 1 4a+9b+16c=1

  • 9 a + 16 b + 25 c = 1 9a+16b+25c=1

Therefore, on solving these 3 equations, a + b + c + d + e = 4 a+b+c+d+e=4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...