a , b , c , x , y , z . . . a, b, c, x, y, z ...

Algebra Level 3

If a x 1 = b c a^{x-1} = bc , b y 1 = c a b^{y-1} = ca and c z 1 = a b c^{z-1} = ab , then x y + y z + z x = ? xy + yz + zx = ?

x 2 y 2 z 2 x^{2}y^{2}z^{2} 2 x y z 2xyz x y z xyz 1 x y z \frac{1}{xyz}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Genis Dude
Aug 30, 2017

Just assume that a = b = c a=b=c

Then, x = 3 , y = 3 , z = 3 x=3, y=3 ,z=3

Therefore, only option that corresponds to x y + y z + z x xy+yz+zx is x y z xyz

A c t u a l M e t h o d {Actual Method}

a x 1 = b c a^{x-1} = bc

a x = a b c a^x=abc

Similarly,

b y = a b c b^y=abc

c z = a b c c^z=abc

Therefore,

a x = b y a^x=b^y

b = a x / y b=a^{x/y}

a b = c z / c . ( a b c = c z ) ab=c^z/c. (abc=c^z)

a x / y + 1 = c z 1 a^{x/y + 1}= c^{z-1}

a x / y + 1 = a x / c a^{x/y + 1}=a^x/c

a x / y + 1 = a x / ( a x / z ) a^{x/y + 1}=a^x/(a^{x/z})

Therefore,

a x / y + 1 = a x x / z a^{x/y + 1} = a^{x- x/z}

Therefore,

x / y + 1 = x x / z x/y + 1 = x - x/z

x y + y z = x y z x y xy+yz=xyz-xy

x y + y z + x y = x y z xy+yz+xy = xyz

Nice short solution with assumption! :)

Ojasee Duble - 3 years, 9 months ago

Log in to reply

Thnx, but it can only be used in competitive exams

genis dude - 3 years, 9 months ago

Log in to reply

Yeah...It's time saving..

Ojasee Duble - 3 years, 9 months ago

Log in to reply

@Ojasee Duble But, what's the actual method?

genis dude - 3 years, 9 months ago

Log in to reply

@Genis Dude Dude I got it

genis dude - 3 years, 9 months ago

Log in to reply

@Genis Dude Wow! Nice ;)

Ojasee Duble - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...