I y = ∫ 2 3 ( x 2 + 2 x y + 1 ) 2 x y + 1 d x
Evaluate the integral above in terms of y .
If I 1 = b a , where a and b are coprime positive integers , find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
WE can have an interesting series by using the fact , n = 0 ∑ ∞ ( − 1 ) n T n ( y ) x n = x 2 + 2 x y + 1 1 + x y where T n ( x ) are chebyshev polynomials of the first kind.
Log in to reply
Wow. Magical eyes and a wonderful brain.
Log in to reply
Oww Thanks for these great complements :)
Nice general solution. Just plugging in y = 1 at the start, though, yields an answer of b a = 2 8 8 7 , i.e., no negative sign.
Nice solution for the general y case. One little thing, shouldn't all " x − y " terms in your solution be " x + y "?
Log in to reply
nope it factors out that way, so x-y is what comes for both sides.
Log in to reply
Hold on, shouldn't the correct factoring be
x 2 + 2 x y + 1 = ( x + y + y 2 − 1 ) ( x + y − y 2 − 1 )
Problem Loading...
Note Loading...
Set Loading...
putting y=1 makes this problem easy, but i will try to generalise the given integral. ∫ ( x 2 + 2 x y + 1 ) 2 x y + 1 d x = ∫ ( x 2 + 2 x y + 1 ) 2 y ( x + y ) d x − ( y 2 − 1 ) ∫ ( x 2 + 2 x y + 1 ) 2 1 d x In the former integral make a sub of u = x 2 + 2 x y + 1 → d u = ( 2 x + 2 y ) d x 2 y ∫ u 2 1 d u = − 2 u y + C = − 2 ( x 2 + 2 x y + 1 ) y + C The latter part is a bit tedious but still easy: ∫ ( x 2 + 2 x y + 1 ) 2 1 d x = ∫ ( ( x + y + y 2 − 1 ) ( x + y − y 2 − 1 ) 1 ) 2 d x = 4 ( y 2 − 1 ) 1 ∫ ( x + y − y 2 − 1 1 − x + y + y 2 − 1 1 ) 2 d x = 4 ( y 2 − 1 ) 1 ∫ ( ( x + y − y 2 − 1 ) 2 1 + ( x + y + y 2 − 1 ) 2 1 − 2 ( x − y + y 2 − 1 ) ( x − y − y 2 − 1 ) 1 ) d x = 4 ( y 2 − 1 ) 1 ∫ ( ( x + y − y 2 − 1 ) 2 1 + ( x + y + y 2 − 1 ) 2 1 − 2 ( x + y − y 2 − 1 1 − x + y + y 2 − 1 1 ) ) d x its easy to integrate all the parts differently now, we will endup with 4 ( y 2 − 1 ) 1 ( − x + y − y 2 − 1 1 − x + y + y 2 − 1 1 − 2 ln ∣ ∣ ∣ ∣ ∣ x + y + y 2 − 1 x + y − y 2 − 1 ∣ ∣ ∣ ∣ ∣ ) we can simplify all of this (includding the former integral) to get 2 ( x 2 + 2 x y + 1 ) x + 2 1 ln ∣ ∣ ∣ ∣ ∣ x + y + y 2 − 1 x + y − y 2 − 1 ∣ ∣ ∣ ∣ ∣ and we are done(note that the ln can be turned into arctan by some identities)