A calculus problem by Aareyan Manzoor

Calculus Level 4

I y = 2 3 x y + 1 ( x 2 + 2 x y + 1 ) 2 d x \large I_y = \int_2^3 \dfrac{xy+1}{(x^2+2xy+1)^2} \, dx

Evaluate the integral above in terms of y y .

If I 1 = a b I_1 = \dfrac ab , where a a and b b are coprime positive integers , find a + b a+b .


The answer is 295.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aareyan Manzoor
Aug 27, 2016

putting y=1 makes this problem easy, but i will try to generalise the given integral. x y + 1 ( x 2 + 2 x y + 1 ) 2 d x = y ( x + y ) ( x 2 + 2 x y + 1 ) 2 d x ( y 2 1 ) 1 ( x 2 + 2 x y + 1 ) 2 d x \int \dfrac{xy+1}{(x^2+2xy+1)^2} dx=\int \dfrac{y(x+y)}{(x^2+2xy+1)^2} dx-(y^2-1)\int \dfrac{1}{(x^2+2xy+1)^2} dx In the former integral make a sub of u = x 2 + 2 x y + 1 d u = ( 2 x + 2 y ) d x u=x^2+2xy+1 \to du= (2x+2y)dx y 2 1 u 2 d u = y 2 u + C = y 2 ( x 2 + 2 x y + 1 ) + C \frac{y}{2}\int \dfrac{1}{u^2} du=-\dfrac{y}{2u}+C=-\dfrac{y}{2(x^2+2xy+1)}+C The latter part is a bit tedious but still easy: 1 ( x 2 + 2 x y + 1 ) 2 d x = ( 1 ( x + y + y 2 1 ) ( x + y y 2 1 ) ) 2 d x = 1 4 ( y 2 1 ) ( 1 x + y y 2 1 1 x + y + y 2 1 ) 2 d x = 1 4 ( y 2 1 ) ( 1 ( x + y y 2 1 ) 2 + 1 ( x + y + y 2 1 ) 2 2 1 ( x y + y 2 1 ) ( x y y 2 1 ) ) d x = 1 4 ( y 2 1 ) ( 1 ( x + y y 2 1 ) 2 + 1 ( x + y + y 2 1 ) 2 2 ( 1 x + y y 2 1 1 x + y + y 2 1 ) ) d x \int \dfrac{1}{(x^2+2xy+1)^2} dx=\int \left( \dfrac{1}{(x+y+\sqrt{y^2-1})(x+y-\sqrt{y^2-1})}\right)^2dx\\ =\dfrac{1}{4(y^2-1)}\int \left( \dfrac{1}{x+y-\sqrt{y^2-1}}- \dfrac{1}{x+y+\sqrt{y^2-1}}\right)^2dx\\ =\dfrac{1}{4(y^2-1)}\int \left( \dfrac{1}{(x+y-\sqrt{y^2-1})^2}+ \dfrac{1}{(x+y+\sqrt{y^2-1})^2}-2\dfrac{1}{(x-y+\sqrt{y^2-1})(x-y-\sqrt{y^2-1})}\right)dx\\ =\dfrac{1}{4(y^2-1)}\int \left( \dfrac{1}{(x+y-\sqrt{y^2-1})^2}+ \dfrac{1}{(x+y+\sqrt{y^2-1})^2}-2\left(\dfrac{1}{x+y-\sqrt{y^2-1}}- \dfrac{1}{x+y+\sqrt{y^2-1}}\right)\right)dx its easy to integrate all the parts differently now, we will endup with 1 4 ( y 2 1 ) ( 1 x + y y 2 1 1 x + y + y 2 1 2 ln x + y y 2 1 x + y + y 2 1 ) \dfrac{1}{4(y^2-1)}\left(-\dfrac{1}{x+y-\sqrt{y^2-1}}- \dfrac{1}{x+y+\sqrt{y^2-1}}-2\ln\left|\dfrac{x+y-\sqrt{y^2-1}}{x+y+\sqrt{y^2-1}}\right|\right) we can simplify all of this (includding the former integral) to get x 2 ( x 2 + 2 x y + 1 ) + 1 2 ln x + y y 2 1 x + y + y 2 1 \dfrac{x}{2(x^2+2xy+1)}+\dfrac{1}{2}\ln\left|\dfrac{x+y-\sqrt{y^2-1}}{x+y+\sqrt{y^2-1}}\right| and we are done(note that the ln can be turned into arctan by some identities)

WE can have an interesting series by using the fact , n = 0 ( 1 ) n T n ( y ) x n = 1 + x y x 2 + 2 x y + 1 \displaystyle \sum_{n=0}^{\infty}(-1)^n {\rm T}_n(y) x^n = \frac{1+xy}{x^2+2xy+1} where T n ( x ) {\rm T}_n(x) are chebyshev polynomials of the first kind.

Aditya Narayan Sharma - 4 years, 9 months ago

Log in to reply

Wow. Magical eyes and a wonderful brain.

Swapnil Das - 4 years, 8 months ago

Log in to reply

Oww Thanks for these great complements :)

Aditya Narayan Sharma - 4 years, 8 months ago

Nice general solution. Just plugging in y = 1 y = 1 at the start, though, yields an answer of a b = 7 288 \dfrac{a}{b} = \dfrac{7}{288} , i.e., no negative sign.

Brian Charlesworth - 4 years, 9 months ago

Log in to reply

oh i must have made an error then.

Aareyan Manzoor - 4 years, 9 months ago

Nice solution for the general y case. One little thing, shouldn't all " x y x-y " terms in your solution be " x + y x+y "?

Wei Chen - 4 years, 9 months ago

Log in to reply

nope it factors out that way, so x-y is what comes for both sides.

Aareyan Manzoor - 4 years, 9 months ago

Log in to reply

Hold on, shouldn't the correct factoring be

x 2 + 2 x y + 1 = ( x + y + y 2 1 ) ( x + y y 2 1 ) x^2+2xy+1=(x+y+\sqrt{y^2-1})(x+y-\sqrt{y^2-1})

Wei Chen - 4 years, 9 months ago

Log in to reply

@Wei Chen o yeah my bad

Aareyan Manzoor - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...