A calculus problem by Akeel Howell

Calculus Level 5

Let f : R C f: \mathbb{R} \mapsto \mathbb{C} be defined as f ( x ) = π e 2 arcsin ( x ) d x \displaystyle{ f(x) = \int{\pi e^{2\arcsin(x)}}dx} \space and f ( 0 ) = 2 π 5 f(0) = \dfrac{2\pi}{5} .

Find f ( 3 ) |f(3)| .

If your answer is of the form b a π e π \dfrac{\sqrt{b}}{a}\pi e^{\pi} , where a a and b b are prime numbers, find a + b a+b .


The answer is 46.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akeel Howell
Mar 22, 2017

We can rewrite f ( x ) f(x) by solving the integral. If we let u = arcsin ( x ) , d u = 1 1 x 2 d x u = \arcsin(x), du = \dfrac{1}{\sqrt{1-x^2}}dx and the integral becomes f ( x ) = π e 2 u cos u d u \displaystyle{f(x) = \pi\int{e^{2u}\cos{u}}du} . We can then proceed by integration by parts to get

π e 2 u cos u d u = π ( e 2 u sin u 2 sin u e 2 u d u ) + C = π ( e 2 u sin u 2 [ e 2 u cos u + 2 e 2 u cos u d u ] ) + C \displaystyle{\pi\int{e^{2u}\cos{u}}du} = \pi \left(e^{2u}\sin{u}-2\int{\sin{u}e^{2u}}du\right)+C \\ = \pi \left(e^{2u}\sin{u}-2\left[-e^{2u}\cos{u}+\int{2e^{2u}\cos{u}du}\right]\right)+C = π ( e 2 u sin u + 2 e 2 u cos u 4 e 2 u cos u d u ) + C e 2 u cos u d u = 1 5 ( e 2 u sin u + 2 e 2 u cos u ) + C = \pi \left(e^{2u}\sin{u}+2e^{2u}\cos{u}-4\int{e^{2u}\cos{u}du}\right)+C \\ \implies \int{e^{2u}\cos{u}du} = \dfrac{1}{5}\left(e^{2u}\sin{u}+2e^{2u}\cos{u}\right)+C cos ( arcsin x ) = 1 x 2 1 5 ( e 2 u sin u + 2 e 2 u cos u ) = 1 5 ( e 2 arcsin x x + 2 e 2 arcsin x 1 x 2 ) + C \cos{(\arcsin{x})} = \sqrt{1-x^2} \implies \dfrac{1}{5}\left(e^{2u}\sin{u}+2e^{2u}\cos{u}\right) = \dfrac{1}{5}\left(e^{2\arcsin{x}}x+2e^{2\arcsin{x}}\sqrt{1-x^2}\right)+C f ( x ) = π 5 e 2 arcsin x ( x + 2 1 x 2 ) + C Since f ( 0 ) = 2 π 5 C = 0 \therefore f(x) = \dfrac{\pi}{5}e^{2\arcsin{x}}\left(x+2\sqrt{1-x^2}\right)+C \\ \text{Since } \space f(0) = \dfrac{2\pi}{5} \implies C = 0 Let arcsin ( 3 ) = y sin ( y ) = 3 So e i y e i y = 6 i \text{Let } \space \arcsin(3) = y \implies \sin(y) = 3 \\ \text{So } \space e^{iy}-e^{-iy} = 6i e i y = 6 i ± 32 2 = 3 i ± 2 i 2 \therefore e^{iy} = \dfrac{6i \pm \sqrt{-32}}{2} = 3i \pm 2i\sqrt{2} So i y = ln i ( 3 ± 2 2 ) y = π 2 i ln ( 3 ± 2 2 ) \text{So } \space iy = \ln{i(3 \pm 2\sqrt{2})} \implies y = \dfrac{\pi}{2}-i\ln{(3 \pm 2\sqrt{2})} So f ( 3 ) = π 5 e π 2 i ln ( 3 ± 2 2 ) ( 3 + 2 8 ) \text{So } \space f(3) = \dfrac{\pi}{5}e^{\pi-2i\ln{(3 \pm 2\sqrt{2})}}(3+2\sqrt{-8}) f ( 3 ) = π 5 e π 2 i ln ( 3 ± 2 2 ) ( 3 + 2 8 ) = π 5 e π ( 3 + 2 8 ) = 41 5 π e π \therefore |f(3)| = \left|\dfrac{\pi}{5}e^{\pi-2i\ln{(3 \pm 2\sqrt{2})}}(3+2\sqrt{-8})\right| \\ = \dfrac{\pi}{5}e^{\pi}\left|(3+2\sqrt{-8})\right| = \dfrac{\sqrt{41}}{5}\pi e^{\pi} a + b = 41 + 5 = 46 \therefore a+b = 41+5 = \space \boxed{46}

Same solution here, just one minor adjustment, that won't affect the answer: When e i y e i y = 6 i e^{iy} - e^{-iy} = 6i , then e i y = 6 i ± 32 2 = 3 i ± 2 i 2 e^{iy} = \frac{6i \pm \sqrt{-32}}{2} = 3i \pm 2i \sqrt{2} . You've missed the minus sign inside the root, before the 32 32 :D

Guilherme Niedu - 4 years, 2 months ago

Log in to reply

Thanks for telling me. I totally missed that.

Akeel Howell - 4 years, 2 months ago

Log in to reply

No problem sir! Very well presented solution, by the way!

Guilherme Niedu - 4 years, 2 months ago

Log in to reply

@Guilherme Niedu Thank you.

Akeel Howell - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...