A calculus problem by Nishanth Subramanian

Calculus Level 5

2 5 ( x 2 ) 17 ( x 5 ) 78 ( x 3 + 9 x 2 24 x + 20 ) d x \int_2^5 (x-2)^{17}(x-5)^{78}(-x^{3}+9x^{2}-24x+20) \, dx

If the above integral can be expressed as a b b ! c ! d ! \dfrac{a^b}{b!} c!d! , where b b , c c and d d are mutually coprime integers, find a + b + c + d a+b+c+d .


The answer is 200.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

As Sambhrant Sachan has done,

f ( x ) = x 3 9 x 2 + 24 x 20 -f(x) = x^3-9x^2+24x-20

f ( x ) = ( x 2 ) 3 3 x 2 + 12 x 12 = ( x 2 ) 3 3 ( x 2 ) 2 = ( x 2 ) 2 ( x 2 3 ) f ( x ) = ( x 2 ) 2 ( x 5 ) \begin{aligned} -f(x) & = (x-2)^3-3x^2+12x-12 \\ & = (x-2)^3-3(x-2)^2 \\ & = (x-2)^2(x-2-3) \\ -f(x) & = (x-2)^2 (x-5) \end{aligned}

Let I = 2 5 ( x 2 ) 17 ( x 5 ) 78 ( x 3 + 9 x 2 24 x + 20 ) d x I = \displaystyle \int_{2}^{5} (x-2)^{17}(x-5)^{78}(-x^3+9x^2-24x+20) dx

I = 2 5 ( x 2 ) 19 ( x 5 ) 79 d x -I = \displaystyle \int_{2}^{5} (x-2)^{19}(x-5)^{79} dx

I = 2 5 ( x 2 ) 19 ( 5 x ) 79 d x I = \displaystyle \int_{2}^{5} (x-2)^{19}(5-x)^{79} dx

Now, consider the beta function I 2 I_2 (20,80) = = 0 1 ( x ) 19 ( 1 x ) 79 d x \int_{0}^{1} (x)^{19}(1-x)^{79} dx

Substitute in I 2 I_2 (20,80)
x = y 2 5 2 x=\frac {y-2}{5-2} \Rightarrow d x = d y 3 dx=\frac {dy}{3}

I 2 I_2 (20,80) 3 99 3^{99} = = 2 5 ( y 2 ) 19 ( 5 y ) 79 d y \displaystyle \int_{2}^{5} (y-2)^{19}(5-y)^{79} dy

Now, evaluating the beta function I 2 I_2 (20,80) , we get I 2 I_2 (20,80) = = 19 ! 79 ! 99 ! \frac {19! 79!}{99!}

Therefore the required integral is equal to 3 99 99 ! × 19 ! × 79 ! \frac{3^{99}}{99!} \times 19! \times 79!

I have a question for you : Question

Sabhrant Sachan - 4 years, 4 months ago

Log in to reply

I have a relatively easier question for u guys too ting tong

Rohith M.Athreya - 4 years, 4 months ago

Give it a proper name Nishanth. Do you really want people to be upset by the babe if the question and not try it??

Anirudh Chandramouli - 4 years, 4 months ago

Log in to reply

Name not babe sorry

Anirudh Chandramouli - 4 years, 4 months ago
Sabhrant Sachan
Feb 2, 2017

Pack some food , some water and a mind full of integration , because this solution will be a hell of a ride for you ...

Let start with the polynomial given to us f ( x ) = x 3 9 x 2 + 24 x 20 -f(x) = x^3-9x^2+24x-20

f ( x ) = ( x 2 ) 3 3 x 2 + 12 x 12 = ( x 2 ) 3 3 ( x 2 ) 2 = ( x 2 ) 2 ( x 2 3 ) f ( x ) = ( x 2 ) 2 ( x 5 ) \begin{aligned} -f(x) & = (x-2)^3-3x^2+12x-12 \\ & = (x-2)^3-3(x-2)^2 \\ & = (x-2)^2(x-2-3) \\ -f(x) & = (x-2)^2 (x-5) \end{aligned}

Let I = 2 5 ( x 2 ) 17 ( x 5 ) 78 ( x 3 + 9 x 2 24 x + 20 ) d x I = \displaystyle \int_{2}^{5} (x-2)^{17}(x-5)^{78}(-x^3+9x^2-24x+20) dx

I = 2 5 ( x 2 ) 19 ( x 5 ) 79 d x -I = \displaystyle \int_{2}^{5} (x-2)^{19}(x-5)^{79} dx

Let's take a general case of : I { n , m } = ( x a ) n 1 s t f n ( x b ) m 2 n d f n d x I_{\{n,m\}} = \displaystyle \int \underbrace{(x-a)^{n}}_{1^{st} f^n} \underbrace{(x-b)^{m}}_{2^{nd} f^n} dx

I { n , m } = ( x a ) n ( x b ) m d x n ( x a ) n 1 ( ( x b ) m d x ) d x = ( x a ) n ( x b ) m + 1 m + 1 n m + 1 ( x a ) n 1 ( x b ) m + 1 d x I { n , m } = ( x a ) n ( x b ) m + 1 m + 1 n m + 1 × I { n 1 , m + 1 } I { n 1 , m + 1 } = ( x a ) n 1 ( x b ) m + 2 m + 2 n 1 m + 2 × I { n 2 , m + 2 } × ( ( n ) m + 1 ) I { n 2 , m + 2 } = ( x a ) n 2 ( x b ) m + 3 m + 3 n 2 m + 3 × I { n 3 , m + 3 } × ( ( n ) m + 1 ( n 1 ) m + 2 ) I { n 3 , m + 4 } = ( x a ) n 3 ( x b ) m + 4 m + 4 n 3 m + 4 × I { n 4 , m + 4 } × ( ( n ) m + 1 ( n 1 ) m + 2 ( n 2 ) m + 2 ) I { 0 , m + n } = ( x a ) 0 ( x b ) m + n + 1 m + n + 1 0 × ( ( n ) m + 1 ( n 1 ) m + 2 ( n 2 ) m + 2 ( 1 ) m + n ) \begin{aligned} I_{\{n,m\}} & = (x-a)^n \displaystyle \int (x-b)^{m} dx - \displaystyle \int n(x-a)^{n-1} \left( \displaystyle\int (x-b)^{m} dx\right) dx \\ & = (x-a)^n \dfrac{(x-b)^{m+1}}{m+1} - \dfrac{n}{m+1} \displaystyle \int (x-a)^{n-1}(x-b)^{m+1}dx \\ I_{\{n,m\}} & = (x-a)^n \dfrac{(x-b)^{m+1}}{m+1} - \dfrac{n}{m+1} \times I_{\{n-1,m+1\}} \\ I_{\{n-1,m+1\}} & = (x-a)^{n-1} \dfrac{(x-b)^{m+2}}{m+2} - \dfrac{n-1}{m+2} \times I_{\{n-2,m+2\}} \hspace{10mm} \times \small \left( \dfrac{-(n)}{m+1} \right) \\ I_{\{n-2,m+2\}} & = (x-a)^{n-2} \dfrac{(x-b)^{m+3}}{m+3} - \dfrac{n-2}{m+3} \times I_{\{n-3,m+3\}} \hspace{10mm} \times \small \left( \dfrac{-(n)}{m+1} \cdot \dfrac{-(n-1)}{m+2} \right) \\ I_{\{n-3,m+4\}} & = (x-a)^{n-3} \dfrac{(x-b)^{m+4}}{m+4} - \dfrac{n-3}{m+4} \times I_{\{n-4,m+4\}} \hspace{10mm} \times \small \left( \dfrac{-(n)}{m+1} \cdot \dfrac{-(n-1)}{m+2} \cdot \dfrac{-(n-2)}{m+2} \right) \\ \vdots \\ I_{\{0,m+n\}} & = (x-a)^0 \dfrac{(x-b)^{m+n+1}}{m+n+1} - 0 \hspace{10mm} \times \small \left( \dfrac{-(n)}{m+1} \cdot \dfrac{-(n-1)}{m+2} \cdot \dfrac{-(n-2)}{m+2} \cdots \dfrac{-(1)}{m+n} \right) \end{aligned}

Add All the equations . We get :

I { n , m } = ( x a ) n ( x b ) m + 1 m + 1 + ( x a ) n 1 ( x b ) m + 2 m + 2 × ( n ) m + 1 + ( x a ) n 2 ( x b ) m + 3 m + 3 × ( n ) m + 1 ( n 1 ) m + 2 + ( x a ) 0 ( x b ) m + n + 1 m + n + 1 × ( n ) m + 1 ( n 1 ) m + 2 ( n 2 ) m + 2 ( 1 ) m + n = r = 0 n ( 1 ) n r n ! r ! m ! ( m + n r ) ! ( x a ) r ( x b ) m + n + 1 r m + n + 1 r \begin{aligned} I_{\{n,m\}} & = (x-a)^n \dfrac{(x-b)^{m+1}}{m+1} + (x-a)^{n-1} \dfrac{(x-b)^{m+2}}{m+2} \times \dfrac{-(n)}{m+1} + (x-a)^{n-2} \dfrac{(x-b)^{m+3}}{m+3} \times \dfrac{-(n)}{m+1} \cdot \dfrac{-(n-1)}{m+2} \\ & \cdots + (x-a)^0 \dfrac{(x-b)^{m+n+1}}{m+n+1} \times \dfrac{-(n)}{m+1} \cdot \dfrac{-(n-1)}{m+2} \cdot \dfrac{-(n-2)}{m+2} \cdots \dfrac{-(1)}{m+n} \\ & = \displaystyle \sum_{r=0}^{n} (-1)^{n-r} \dfrac{n!}{r!} \cdot \dfrac{m!}{(m+n-r)!} \cdot \dfrac{(x-a)^{r}(x-b)^{m+n+1-r}}{m+n+1-r} \end{aligned}

I { n , m } = ( x b ) m + 1 n ! m ! ( n + m + 1 ) ! r = 0 n ( 1 ) n r ( m + n + 1 r ) ( x b ) n r ( x a ) r \boxed{ I_{\{n,m\}} = \dfrac{(x-b)^{m+1} \cdot n! \cdot m!}{(n+m+1)!} \displaystyle \sum_{r=0}^{n} (-1)^{n-r}\dbinom{m+n+1}{r} (x-b)^{n-r}(x-a)^{r}}

a = + 2 , b = + 5 , n = 19 , m = 79 a= +2 \hspace{2.5mm} ,\hspace{2.5mm} b=+5\hspace{2.5mm} , \hspace{2.5mm} n=19 \hspace{2.5mm} , \hspace{2.5mm} m = 79

I { 19 , 79 } = ( x 5 ) 80 19 ! 79 ! 99 ! r = 0 19 ( 1 ) 19 r ( 99 r ) ( x 5 ) 19 r ( x 2 ) r I_{\{19,79\}} = \dfrac{(x-5)^{80} \cdot 19! \cdot 79!}{99!} \displaystyle \sum_{r=0}^{19} (-1)^{19-r}\dbinom{99}{r} (x-5)^{19-r}(x-2)^{r}

Putting the limits

I { 19 , 79 } = 0 ( 3 ) 80 19 ! 79 ! 99 ! × ( 99 0 ) × 1 × ( 3 ) 19 = 3 99 99 ! × 19 ! × 79 ! I = 3 99 99 ! × 19 ! × 79 ! I = 3 99 99 ! × 19 ! × 79 ! \begin{aligned} I_{\{19,79\}} & = 0 - \dfrac{(3)^{80} \cdot 19! \cdot 79!}{99!} \times \dbinom{99}{0} \times -1 \times -(3)^{19} \\ & = -\dfrac{3^{99}}{99!} \times 19! \times 79! \\ -I & = -\dfrac{3^{99}}{99!} \times 19! \times 79! \\ I & = \dfrac{3^{99}}{99!} \times 19! \times 79! \end{aligned}

Answer : 3 + 99 + 19 + 79 = 200 3+99+19+79 = \boxed{200}


Special Case : Lower limit = a = a , upper limit = b = b

I { n , m } = 0 ( a b ) m + 1 n ! m ! ( n + m + 1 ) ! × ( n + m + 1 0 ) × ( 1 ) n × ( a b ) n = ( 1 ) n + 1 ( a b ) n + m + 1 n ! m ! ( n + m + 1 ) ! \begin{aligned} I_{\{n,m\}} & = 0 - \dfrac{(a-b)^{m+1} \cdot n! \cdot m!}{(n+m+1)!} \times \dbinom{n+m+1}{0} \times (-1)^{n} \times (a-b)^{n} \\ & = (-1)^{n+1}\dfrac{(a-b)^{n+m+1} \cdot n! \cdot m!}{(n+m+1)!} \end{aligned}

Excellent Solution!

Nishanth Subramanian - 4 years, 4 months ago

Log in to reply

Thank you , took me 30 30 min to write

Sabhrant Sachan - 4 years, 4 months ago

there is a shortcut for this problem ?

Sabhrant Sachan - 4 years, 4 months ago

Log in to reply

Yes, I used the Beta function midway.

Nishanth Subramanian - 4 years, 4 months ago

Log in to reply

@Nishanth Subramanian Can you please post your solution .

Sabhrant Sachan - 4 years, 4 months ago

wow! u really are a patient integrator :P

β \beta function helped midway :)

Rohith M.Athreya - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...