A calculus problem by Refaat M. Sayed

Calculus Level 5

0 π / 2 tan 3 ( x ) cos 5 ( x ) cos ( 7 x ) d x = A B \large \int^{{\pi } /{2} }_{0}\tan ^{3}( x) \cos ^{5}(x) \cos (7x) \, dx=\dfrac{A}{B}

The equation above holds true for some coprime positive integers A A and B B . Find A + B A+B .


Bonus : Find the close form of the definite integral, I Y , Z = 0 π / 2 ( tan ( x ) ) Y ( cos ( x ) ) Z 2 cos ( Z x ) d x I_{Y,Z} = \int ^{{\pi } / {2} }_{0}\left( \tan \left( x\right) \right) ^{Y}\left( \cos \left( x\right) \right) ^{Z-2}\cos \left( Zx\right) \, dx


The answer is 61.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 16, 2016

cos ( n x ) = { k = 0 n ( n 2 k ) ( 1 ) n 2 + k cos 2 k x sin n 2 k x if n is even k = 0 n ( n 2 k + 1 ) ( 1 ) n + 1 2 + k cos 2 k + 1 x sin n 2 k 1 x if n is odd \cos (nx) = \begin{cases} \displaystyle \sum_{k=0}^n {n \choose 2k} (-1)^{\left \lfloor \frac n2 \right \rfloor+k}\cos^{2k} x \sin^{n-2k} x & \text{if } n \text{ is even} \\ \displaystyle \sum_{k=0}^n {n \choose 2k+1} (-1)^{\left \lfloor \frac {n+1}2 \right \rfloor+k}\cos^{2k+1} x \sin^{n-2k-1} x & \text{if } n \text{ is odd} \end{cases}

Considering when n n is odd:

I = 0 π 2 tan m x cos n 2 x cos n x d x = 0 π 2 sin m x cos n m 2 x cos n x d x = 0 π 2 sin m x cos n m 2 x k = 0 n ( n 2 k + 1 ) ( 1 ) n + 1 2 + k cos 2 k + 1 x sin n 2 k 1 x d x = 0 π 2 k = 0 n ( n 2 k + 1 ) ( 1 ) n + 1 2 + k cos 2 k + n m 1 x sin m + n 2 k 1 x d x = k = 0 n ( n 2 k + 1 ) ( 1 ) n + 1 2 + k 0 π 2 cos 2 k + n m 1 x sin m + n 2 k 1 x d x = 1 2 k = 0 n ( n 2 k + 1 ) ( 1 ) n + 1 2 + k B ( 2 k + n m 2 , m + n 2 k 2 ) There must be a simpler general form. \begin{aligned} I & = \int_0^\frac \pi 2 \tan^m x \cos^{n-2} x \cos nx \ dx \\ & = \int_0^\frac \pi 2 \sin^m x \cos^{n-m-2} x \cos nx \ dx \\ & = \int_0^\frac \pi 2 \sin^m x \cos^{n-m-2} x \sum_{k=0}^n {n \choose 2k+1} (-1)^{\left \lfloor \frac {n+1}2 \right \rfloor+k}\cos^{2k+1} x \sin^{n-2k-1} x \ dx \\ & = \int_0^\frac \pi 2 \sum_{k=0}^n {n \choose 2k+1} (-1)^{\left \lfloor \frac {n+1}2 \right \rfloor + k}\cos^{2k+n-m-1} x \sin^{m+ n-2k-1} x \ dx \\ & = \sum_{k=0}^n {n \choose 2k+1} (-1)^{\left \lfloor \frac {n+1}2 \right \rfloor+k} \int_0^\frac \pi 2 \cos^{2k+n-m-1} x \sin^{m+ n-2k-1} x \ dx \\ & = \frac 12 \sum_{k=0}^n {n \choose 2k+1} (-1)^{\left \lfloor \frac {n+1}2 \right \rfloor+k} B \left( \frac {2k+n-m}2, \frac {m+ n-2k}2 \right) & \small \color{#3D99F6}{\text{There must be a simpler general form.}} \end{aligned}

Putting m = 3 m = 3 and n = 7 n=7 , we have:

I = 1 2 k = 0 7 ( 7 2 k + 1 ) ( 1 ) k + 1 B ( k + 2 , 5 k ) = 1 2 ( 7 B ( 2 , 5 ) + 35 B ( 3.4 ) 21 B ( 4 , 3 ) + B ( 5 , 2 ) ) = 7 B ( 3 , 4 ) 3 B ( 2 , 5 ) = 7 Γ ( 3 ) Γ ( 4 ) Γ ( 7 ) 3 Γ ( 2 ) Γ ( 5 ) Γ ( 7 ) = 7 2 ! 3 ! 6 ! 3 1 ! 4 ! 6 ! = 7 60 1 10 = 1 60 \begin{aligned} I & = \frac 12 \sum_{k=0}^7 {7 \choose 2k+1} (-1)^{k+1} B \left( k+2, 5-k \right) \\ & = \frac 12 \left(-7B(2,5) + 35B(3.4) - 21B(4,3) + B(5,2) \right) \\ & = 7B(3,4) - 3B(2,5) \\ & = 7 \cdot \frac {\Gamma (3) \Gamma (4)}{\Gamma (7)} - 3 \cdot \frac {\Gamma (2) \Gamma (5)}{\Gamma (7)} \\ & = 7 \cdot \frac {2! 3!}{6!} - 3 \cdot \frac {1! 4!}{6!} \\ & = \frac 7{60} - \frac 1{10} = \frac 1{60} \end{aligned}

A + B = 1 + 60 = 61 \implies A+B = 1 + 60 = \boxed{61}


Previous solution

I = 0 π 2 tan 3 x cos 5 x cos 7 x d x = 0 π 2 sin 3 x cos 2 x T 7 ( cos x ) d x T n ( ) is Chebyshev polynomial of the first kind = 0 π 2 sin x ( 1 cos 2 x ) cos 2 x T 7 ( cos x ) d x Let u = cos x d u = sin x d x = 0 1 ( 1 u 2 ) u 2 T 7 ( u ) d u = 0 1 ( 1 u 2 ) u 2 ( 64 u 7 112 u 5 + 56 u 3 7 u ) d u = 0 1 ( 64 u 11 + 176 u 9 168 u 7 + 63 u 5 7 u 3 ) d u = 64 12 u 12 + 176 10 u 10 168 8 u 8 + 63 6 u 6 7 4 u 4 0 1 = 1 60 \begin{aligned} I & = \int_0^\frac \pi 2 \tan^3 x \cos^5 x \color{#3D99F6}{\cos 7x} \ dx \\ & = \int_0^\frac \pi 2 \sin^3 x \cos^2 x \ \color{#3D99F6}{T_7(\cos x)} \ dx & \small \color{#3D99F6}{T_n (\cdot) \text{ is Chebyshev polynomial of the first kind}} \\ & = \int_0^\frac \pi 2 \sin x (1-\cos^2 x) \cos^2 x \ T_7(\cos x) \ dx & \small \color{#3D99F6}{\text{Let }u = \cos x \implies du = - \sin x \ dx} \\ & = \int_0^1 (1-u^2) u^2 \ T_7(u) \ du \\ & = \int_0^1 (1-u^2) u^2 (64u^7-112u^5+56u^3-7u ) \ du \\ & = \int_0^1 (-64u^{11}+176u^9 -168u^7+63u^5-7u^3 ) \ du \\ & = -\frac{64}{12}u^{12}+\frac {176}{10}u^{10} - \frac {168}8u^8 + \frac {63}6u^6 - \frac 74u^4 \ \bigg|_0^1 \\ & = \frac 1{60} \end{aligned}

A + B = 1 + 60 = 61 \implies A+B = 1 + 60 = \boxed{61}

Isn't this approach 'not so helpful' for proving the Bonus ?

Rishabh Jain - 4 years, 11 months ago

Log in to reply

Nope, there is another one involving beta function. Very long to write.

Chew-Seong Cheong - 4 years, 11 months ago

Typo: = 0 1 ( 64 u 11 + 176 u 9 168 u 7 + 63 u 5 7 u 3 ) d u = 64 12 u 12 + 176 10 u 10 168 8 u 8 + 63 6 u 6 7 4 u 4 0 1 \displaystyle = \int_0^1 (-64u^{11}+176\color{#D61F06}{u}^9-168u^7+63u^5-7u^3) du\\ =-\dfrac{64}{12}\color{#D61F06}{u^{12}}+\dfrac{176}{10}\color{#D61F06}{u^{10}}-\dfrac{168}{\color{#D61F06}{8}}\color{#D61F06}{u^8}+\dfrac{63}{\color{#D61F06}{6}}\color{#D61F06}{u^6}-\dfrac{7}{\color{#D61F06}{4}}\color{#D61F06}{u^4}\Big|_0^1

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

Thanks a lot. I have done the changes.

Chew-Seong Cheong - 4 years, 11 months ago

Log in to reply

There's a typo on the integral part, at u 9 \color{#D61F06}{u}^9

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

@Hung Woei Neoh Thanks again

Chew-Seong Cheong - 4 years, 11 months ago

Log in to reply

@Chew-Seong Cheong You're welcome

Btw, may I ask, what is that B B thing?

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

@Hung Woei Neoh Sorry, I have explained in the solution refer here: beta function and gamma function .

Chew-Seong Cheong - 4 years, 11 months ago

Sir can you provide the link for expansion of cos nx uses in the very 1st step of your solution

space sizzlers - 4 years, 3 months ago
Will Jain
Jul 18, 2016

Use property of definite integration f(x)=f(a+b-x)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...