A Cubic Polynomial Transformed

Algebra Level 4

The Roots of the following Cubic Equation are α \displaystyle \alpha , β \displaystyle \beta and γ \displaystyle \gamma .

x 3 + 7 x 2 + 2 x + 9 = 0 \displaystyle x^3+7x^2+2x+9=0

Then the value of the Expression

( 3 α 2 ) ( 3 β 2 ) ( 3 γ 2 ) ( 2 + 3 α ) ( 2 + 3 β ) ( 2 + 3 γ ) \displaystyle \dfrac{(3 \alpha-2)(3 \beta-2)(3 \gamma-2)}{(2+3 \alpha)(2+3 \beta)(2+3 \gamma)}

Can be written as a b \displaystyle \dfrac{a}{b} , where a \displaystyle a and b \displaystyle b are coprime positive integers. Find a + b \displaystyle a+b .


The answer is 654.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Ayush Verma
Jan 23, 2015

L e t f ( x ) = x 3 + 7 x 2 + 2 x + 9 = ( x α ) ( x β ) ( x γ ) a b = ( 3 α 2 ) ( 3 β 2 ) ( 3 γ 2 ) ( 3 α + 2 ) ( 3 β + 2 ) ( 3 γ + 2 ) = ( 3 ) 3 ( 2 3 α ) ( 2 3 β ) ( 2 3 γ ) ( 3 ) 3 ( 2 3 α ) ( 2 3 β ) ( 2 3 γ ) = f ( 2 3 ) f ( 2 3 ) = ( 2 3 ) 3 + 7 ( 2 3 ) 2 + 2 ( 2 3 ) + 9 ( 2 3 ) 3 + 7 ( 2 3 ) 2 + 2 ( 2 3 ) + 9 = 371 283 a + b = 371 + 283 = 654 Let\quad f\left( x \right) ={ x }^{ 3 }+7{ x }^{ 2 }+2x+9=\left( x-\alpha \right) \left( x-\beta \right) \left( x-\gamma \right) \\ \\ \Rightarrow \cfrac { a }{ b } =\cfrac { \left( 3\alpha -2 \right) \left( 3\beta -2 \right) \left( 3\gamma -2 \right) }{ \left( 3\alpha +2 \right) \left( 3\beta +2 \right) \left( 3\gamma +2 \right) } \\ \\ =\cfrac { { \left( -3 \right) }^{ 3 }\left( \cfrac { 2 }{ 3 } -\alpha \right) \left( \cfrac { 2 }{ 3 } -\beta \right) \left( \cfrac { 2 }{ 3 } -\gamma \right) }{ { \left( -3 \right) }^{ 3 }\left( \cfrac { -2 }{ 3 } -\alpha \right) \left( \cfrac { -2 }{ 3 } -\beta \right) \left( \cfrac { -2 }{ 3 } -\gamma \right) } \\ \\ =\cfrac { f\left( \cfrac { 2 }{ 3 } \right) }{ f\left( \cfrac { -2 }{ 3 } \right) } \\ \\ =\cfrac { { \left( \cfrac { 2 }{ 3 } \right) }^{ 3 }+7{ \left( \cfrac { 2 }{ 3 } \right) }^{ 2 }+2\left( \cfrac { 2 }{ 3 } \right) +9 }{ { \left( \cfrac { -2 }{ 3 } \right) }^{ 3 }+7{ \left( \cfrac { -2 }{ 3 } \right) }^{ 2 }+2\left( \cfrac { -2 }{ 3 } \right) +9 } \\ \\ =\cfrac { 371 }{ 283 } \\ \\ \Rightarrow a+b=371+283=654

The coefficients in the polynomial form the taxi-cab number!

U Z - 6 years, 4 months ago

Log in to reply

Thanks. At least someone noticed it!

Satvik Golechha - 6 years, 4 months ago

Simple Vieta. 'Harder' ratings!

Kartik Sharma - 6 years, 4 months ago

Log in to reply

Actually, this approach is using Remainder-Factor Theorem to see the transformation. For the Vieta's approach, see Chew-Seong's solution below.

I have just added the skill of "Transforming Roots of Polynomial" to both the chapters of Remainder-Factor Theorem and Vieta's Formula.

Calvin Lin Staff - 6 years, 4 months ago

Log in to reply

Is my solution right? I got a = 353 , b = 301 . plz see my solution below.

Nihar Mahajan - 6 years, 4 months ago

Log in to reply

@Nihar Mahajan You made a mistake.

You have written 9(ab+bc+ca)instead of 18(ab+bc+ca).

In this question answer will come 654 for any value of (ab+bc+ca) if for that value denominator and numerator are coprime.(Why?Think yourself.)

Ayush Verma - 6 years, 4 months ago

Log in to reply

@Ayush Verma let (ab+bc+ca) be 'd'

so the expression becomes-

-[8+84+18d+243] / [8-84+18d-243]

= -[335 + 18d] / [18d - 319]

= -[335 + 18d] / -[319 - 18d]

= [335 + 18d] / [319 - 18d]

so , a =335 + 18d , b = 319 - 18d , giving ,

a+b = 335 + 18d + 319 - 18d = 654 .

so value of a+b does not depend on value of (ab+bc+ca) , since it gets cancelled!!

Thanks @ayush verma for one more problem!

Nihar Mahajan - 6 years, 4 months ago

Very Clear. Nice Solution!

Satvik Golechha - 6 years, 4 months ago

Log in to reply

@Satvik Golechha these type of questions were Given to us in our class!!!!............... (but for this we needed to think harder................. Nice question)

Parth Lohomi - 6 years, 4 months ago
Chew-Seong Cheong
Jan 23, 2015

Using Vieta's Formulas, we have:

  • α + β + γ = 7 \alpha+\beta+\gamma = -7
  • α β + β γ + γ α = 2 \alpha\beta+\beta\gamma+\gamma\alpha = 2
  • α β γ = 9 \alpha\beta\gamma = -9

Now:

( 3 α 2 ) ( 3 β 2 ) ( 3 γ 2 ) ( 3 α + 2 ) ( 3 β + 2 ) ( 3 γ + 2 ) \dfrac {(3\alpha - 2)(3\beta - 2)(3\gamma - 2)} {(3\alpha + 2)(3\beta + 2)(3\gamma + 2)}

= 12 ( α + β + γ ) 18 ( α β + β γ + γ α ) + 27 α β γ 8 12 ( α + β + γ ) + 18 ( α β + β γ + γ α ) + 27 α β γ + 8 = \dfrac {12(\alpha+\beta+\gamma)-18(\alpha\beta+\beta\gamma+\gamma\alpha)+27\alpha\beta\gamma-8}{12(\alpha+\beta+\gamma)+18(\alpha\beta+\beta\gamma+\gamma\alpha)+27\alpha\beta\gamma+8}

= 12 ( 7 ) 18 ( 2 ) + 27 ( 9 ) 8 12 ( 7 ) + 18 ( 2 ) + 27 ( 9 ) + 8 = 371 283 =\dfrac {12(-7)-18(2)+27(-9)-8}{12(-7)+18(2)+27(-9)+8} = \dfrac {371}{283}

a = 371 \Rightarrow a = 371 , b = 283 b = 283 and a + b = 654 a+b = \boxed{654}

Good solution,sir .Upvoted

Ayush Verma - 6 years, 4 months ago

Did exactly the same,sir

Anik Mandal - 6 years, 4 months ago
Shashwat Shukla
Jan 23, 2015

The problem can also be solved by taking the title of the problem at face value:

Make the substitution x x 3 x\rightarrow \frac{x}{3} to get a new polynomial whose roots are 3 α , 3 β , 3 γ 3\alpha ,3\beta ,3\gamma .

The given expression then reduces to f ( 2 ) f ( 2 ) \frac{f(2)}{f(-2)} where f ( x ) f(x) is the polynomial obtained after making the aforementioned substitution.

Of course, this is wholly equivalent to A y u s h Ayush V e r m a s Verma's solution.

α+β+γ=-7 αβ+βγ+αγ=2 αβγ=-9 (3α-2)(3β-2)(3γ-2)=-371 (3α+2)(3β+2)(3γ+2)=-283 a/b= -7*53/-283 on comparing a=371 b=283 a+b=654

Avn Bha
Jan 23, 2015

i did it by opening the brackets ad then solving using vietas formukla

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...