A Fraction And A Binomial

E = 1 2 ( 30 1 ) + 1 4 ( 30 3 ) + 1 6 ( 30 5 ) + + 1 30 ( 30 29 ) = 2 a b c \mathbb E = \frac 12\binom{30}{1} +\frac 14\binom{30}{3}+\frac 16\binom{30}{5}+\cdots +\frac 1{30}\binom{30}{29}=\frac{2^a-b}{c}

If a , b , c a,b,c are coprime integers, then which of the following is a possible value of a + b + c a+b+c .


Where ( a b ) = a ! b ! ( a b ) ! \displaystyle\binom ab = \dfrac{a!}{b!\cdot (a-b)!}

66 63 64 65 None of the others

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sravanth C.
Apr 3, 2017

We know that ( 1 + x ) n = 1 + ( n 1 ) x + ( n 2 ) x 2 + + x n (1+x)^n=1+\binom n1 x+\binom n2 x^2+\dots +x^n Integrating both the sides w.r.t x x we get ( 1 + x ) n + 1 n + 1 + C = x + 1 2 ( n 1 ) x 2 + 1 3 ( n 2 ) x 3 + + 1 n + 1 x n + 1 \frac{(1+x)^{n+1}}{n+1}+\mathbb C=x+\frac 12\binom n1 x^2+\frac 13\binom n2 x^3+\dots +\frac 1{n+1} x^{n+1} Substituting x = 0 x=0 in the above expression we get C = 1 n + 1 \mathbb C=-\dfrac 1{n+1} .

( 1 + x ) n + 1 n + 1 1 n + 1 = x + 1 2 ( n 1 ) x 2 + 1 3 ( n 2 ) x 3 + + 1 n + 1 x n + 1 \frac{(1+x)^{n+1}}{n+1}-\frac 1{n+1}=x+\frac 12\binom n1 x^2+\frac 13\binom n2 x^3+\dots +\frac 1{n+1}x^{n+1}


Now substituting x = 1 x=1 and x = 1 x=-1 and adding the equations gives us

2 n + 1 2 n + 1 = 2 ( 1 2 ( n 1 ) + 1 3 ( n 2 ) + + 1 n + 1 ) 2 n 1 n + 1 = 1 2 ( n 1 ) + 1 3 ( n 2 ) + + 1 n + 1 \begin{aligned} \dfrac{2^{n+1}-2}{n+1}&=2\left(\frac 12\binom n1+\frac 13\binom n2+\cdots +\frac 1{n+1}\right)\\ \dfrac{2^{n}-1}{n+1}&=\frac 12\binom n1+\frac 13\binom n2+\cdots +\frac 1{n+1}\\ \end{aligned}

Now substituting n = 30 n=30 we get E = 2 30 1 31 \mathbb E = \frac{2^{30}-1}{31}

Thus a + b + c = 62 a+b+c = 62 .

This is a very clear solution! Well done!

Pi Han Goh - 4 years, 2 months ago

Wait a second, for completeness, you should prove that 63,64,65 and 66 cannot be the answer...

Do you know how to do that?

Pi Han Goh - 4 years, 2 months ago

Log in to reply

Sir , what do you mean by proving the other options wrong?

Ankit Kumar Jain - 4 years, 2 months ago

Log in to reply

The author have shown that a possible value of a+b+c is 62, how does he know that there isn't any other triplets (a,b,c) whose sum is 63,64,65 or 66?

Pi Han Goh - 4 years, 2 months ago

Log in to reply

@Pi Han Goh The answer came out to be 2 30 1 31 \dfrac{2^{30}-1}{31} , so clearly the answer is 62 \boxed{62} , so where is the issue? I mean how we achieve the other values?

Ankit Kumar Jain - 4 years, 2 months ago

Log in to reply

@Ankit Kumar Jain Another triplets of (a,b,c) that satisfy this condition is ( a , b , c ) = ( 25 , 1082401 , 1 ) (a,b,c) = (25,-1082401,1) , so a possible value of a + b + c a+b+c is 25 1082401 + 1 = 1082375 25 - 1082401 + 1 = -1082375 .

Pi Han Goh - 4 years, 2 months ago

Log in to reply

@Pi Han Goh I now get your point. Thanks!

Let me try if I can prove it.

Ankit Kumar Jain - 4 years, 2 months ago

Log in to reply

@Ankit Kumar Jain Yup no problem.

Hint: To prove this, just focus on the number "a".

Pi Han Goh - 4 years, 2 months ago

Oh damn it.

I forgot to divide by 2 2 .

Ankit Kumar Jain - 4 years, 2 months ago
Lehasa Seoe
Nov 23, 2018

First we write the series in sigma notation:

E = n = 1 15 1 2 n ( 30 2 n 1 ) E=\sum\limits_{n=1}^{15}{\dfrac{1}{2n} \binom{30}{2n-1}}

The approach here is to try and simplify the summand as far as possible:

= n = 1 15 1 2 n 30 ! ( 31 2 n ) ! ( 2 n 1 ) ! =\sum\limits_{n=1}^{15}{\dfrac{1}{2n}\dfrac{30!}{(31-2n)!(2n-1)!}}

= 1 31 n = 1 15 31 30 ! ( 2 n ) ! ( 31 2 n ) ! =\dfrac{1}{31}\sum\limits_{n=1}^{15}{\dfrac{31\cdot 30!}{(2n)!(31-2n)!}}

= 1 31 n = 1 15 ( 31 2 n ) =\dfrac{1}{31}\sum\limits_{n=1}^{15}{\binom{31}{2n}}

From the Binomial Theorem:

( x + y ) n = k = 0 n ( n k ) x k y n k (x+y)^{n}=\sum\limits_{k=0}^{n}{\binom{n}{k} x^{k}y^{n-k}}

We take look at when x = y = 1 x=y=1 and x = 1 x=1 and y = 1 y=-1 , and n = 31 n=31 :

2 31 = k = 0 31 ( 31 k ) ( 1 ) k ( 1 ) 31 k 2^{31}=\sum\limits_{k=0}^{31}{\binom{31}{k}{(1)^k}{(1)^{31-k}}} _ _ _ _ _ (1)

0 = k = 0 31 ( 31 k ) ( 1 ) k ( 1 ) 31 k 0=\sum\limits_{k=0}^{31}{\binom{31}{k}{(1)^k}{(-1)^{31-k}}} _ _ _ _ _ (2)

Then we subtract the two equations 1 and 2, to get:

2 31 = k = 0 31 ( 31 k ) ( 1 ( 1 ) 31 k ) 2^{31}=\sum\limits_{k=0}^{31}{\binom{31}{k}{(1-(-1)^{31-k})}}

2 31 = k = 0 31 ( 31 k ) ( 1 + ( 1 ) k ) 2^{31}=\sum\limits_{k=0}^{31}{\binom{31}{k}{(1+(-1)^{-k})}}

Now we collect the non-zero terms and re-write this in sigma notation to get:

2 31 = 2 + 2 k = 1 15 ( 31 2 k ) 2^{31}=2+2\sum\limits_{k=1}^{15}{\binom{31}{2k}}

k = 1 15 ( 31 2 k ) = 2 30 1 \therefore \sum\limits_{k=1}^{15}{\binom{31}{2k}}=2^{30}-1

We substitute this back in E E to get:

E = 1 31 ( 2 30 1 ) = 2 30 1 31 E=\dfrac{1}{31}(2^{30}-1)=\dfrac{2^{30}-1}{31}

a + b + c = 30 + 1 + 31 = 62 \therefore a+b+c=30+1+31=62

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...