A Huge Summation it is. #2

n = 1 9 ( 11 × n ) 11 × n \color{#3D99F6}{\displaystyle \sum_{n=1}^9 \left( {11 \times n} \right)^{11 \times n}}

Find the last two digits of the above summation.


Join the Brilliant Classes and enjoy the excellence. Also checkout Foundation Assignment #2 for JEE.


The answer is 87.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mas Mus
May 30, 2015

Let's write all items of the summation:

11 11 = ( 10 + 1 ) 11 = 100 × C 1 + 111 × 1 11 22 22 = ( 20 + 2 ) 22 = 100 × C 2 + 221 × 2 22 33 33 = ( 30 + 3 ) 33 = 100 × C 3 + 331 × 3 33 ( 90 + 9 ) 99 = 100 × C 9 + 991 × 9 99 {11}^{11}=(10+1)^{11}=100\times{C_1}+111\times{1}^{11}\\{22}^{22}=(20+2)^{22}=100\times{C_2}+221\times{2}^{22}\\{33}^{33}=(30+3)^{33}=100\times{C_3}+331\times{3}^{33}\\\vdots\\(90+9)^{99}=100\times{C_9}+991\times{9}^{99}

It's clear that 100 × C 1 , 100 × C 2 , 100 × C 3 , , 100 × C 9 100\times{C_1}, 100\times{C_2}, 100\times{C_3}, \ldots, 100\times{C_9} are divisible by 100 100 , so we just need to find the reminder of 111 × 1 11 , 221 × 2 22 , 331 × 3 33 , , 991 × 9 99 ( m o d 100 ) 111\times{1}^{11}, 221\times{2}^{22}, 331\times{3}^{33}, \ldots, 991\times{9}^{99}\pmod{100} .

By using Euler's theorem, CRT, and the properties of modular arithmetic we will find that

2 22 4 ( m o d 100 ) 3 33 23 ( m o d 100 ) 4 44 56 ( m o d 100 ) 5 55 25 ( m o d 100 ) 6 66 56 ( m o d 100 ) 7 77 7 ( m o d 100 ) 8 88 16 ( m o d 100 ) 9 99 89 ( m o d 100 ) {2}^{22}\equiv4\pmod{100}~~~~~~~{3}^{33}\equiv23\pmod{100}~~~~~{4}^{44}\equiv56\pmod{100}\\{5}^{55}\equiv25\pmod{100}~~~~~{6}^{66}\equiv56\pmod{100}~~~~~{7}^{77}\equiv7\pmod{100}\\{8}^{88}\equiv16\pmod{100}~~~~~{9}^{99}\equiv89\pmod{100}

Now, we have

11 × 1 + 21 × 4 + 31 × 23 + 41 × 56 + 51 × 25 + 61 × 56 + 71 × 7 + 81 × 16 + 91 × 89 11 + 84 + 13 + 96 + 75 + 16 + 97 + 96 + 99 587 87 ( m o d 100 ) 11\times{1}+21\times{4}+31\times{23}+41\times{56}+51\times{25}+61\times{56}+71\times{7}+\\81\times{16}+91\times{89}\equiv11+84+13+96+75+16+97+96+99\\\equiv587\equiv\boxed{87}\pmod{100}

Like that how can we find the last 3 digits?????????????

Abhisek Mohanty - 6 years ago

Log in to reply

Please read this

Mas Mus - 6 years ago

Log in to reply

I already read the solution for the problem you asked to see.Can you please explain it again.

Rama Devi - 6 years ago

Log in to reply

@Rama Devi Please reply soon

Rama Devi - 6 years ago

Log in to reply

@Rama Devi which part should I explain?

Mas Mus - 6 years ago

Log in to reply

@Mas Mus Please explain the last part

Rama Devi - 6 years ago

Log in to reply

@Rama Devi please explain soon.

Rama Devi - 6 years ago

Log in to reply

@Rama Devi ( 11 2 ) × 100 × 1 11 + 111 × 1 11 = 55 × 100 + 111 = 5611 611 ( m o d 1000 ) {11\choose{2}}\times{100}\times{1^{11}}+111\times{1^{11}}=55\times{100}+111=5611\equiv611\pmod{1000}

Mas Mus - 6 years ago

Log in to reply

@Mas Mus But 611 is not the answer

Rama Devi - 6 years ago

Log in to reply

@Rama Devi I just show you how to get 611. You can find out other items by following the steps above. Now, look how to get the answer.

611 × 1 + 321 × 304 + 131 × 523 + 41 × 56 + 51 × 125 + 161 × 456 + 371 × 207 + 681 × 616 + 91 × 889 611 + 97584 + 68513 + + 80899 611 + 584 + 513 + 296 + 375 + 416 + 797 + 496 + 899 4987 987 ( m o d 1000 ) 611\times{1}+321\times{304}+131\times{523}+41\times{56}+51\times{125}+161\times4{56}+\\371\times{207}+681\times{616}+91\times{889}\equiv611+97584+68513+\ldots+80899\\\equiv611+584+513+296+375+416+797+496+899\\\equiv4987\equiv\boxed{987}\pmod{1000}

Mas Mus - 6 years ago

Log in to reply

@Mas Mus Mas Mus, Can I ask? How could 2 2 22 = 100 × C 2 + 221 × 2 22 22^{22} = 100 × C_2 + 221×2^{22} ? And so on?

Victor Zhang - 5 years, 7 months ago

Log in to reply

@Victor Zhang Using Binomial Expansion , we can write the expansion of ( 22 ) 22 \left(22\right)^{22} as

( 20 + 2 ) 22 = ( 22 0 ) 20 22 × 2 0 + ( 22 1 ) 20 21 × 2 1 + ( 22 2 ) 20 20 × 2 2 + + ( 22 20 ) 20 2 × 2 20 + ( 22 21 ) 20 1 × 2 21 + ( 22 22 ) 20 0 × 2 22 = 100 [ ( 22 0 ) 10 20 × 2 22 × 2 0 + ( 22 1 ) 10 19 × 2 21 × 2 1 + ( 22 2 ) 10 18 × 2 20 × 2 2 + + ( 22 20 ) 2 2 × 2 20 ] + 220 × 2 22 + 2 22 = 100 × C 2 + 221 × 2 22 \begin{array}{c}&\left(20+2\right)^{22}&={22\choose0}~{20}^{22}\times{{2}^{0}}+\binom{22}{1}~{20}^{21}\times{{2}^{1}}+\binom{22}{2}~{20}^{20}\times{{2}^{2}}+\dots+\binom{22}{20}~{20}^{2}\times{{2}^{20}}+\binom{22}{21}~{20}^{1}\times{{2}^{21}}+\binom{22}{22}~{20}^{0}\times{{2}^{22}}\\\\&=100\left[{22\choose0}~{10}^{20}\times{{2}^{22}}\times{{2}^{0}}+{22\choose1}~{10}^{19}\times{{2}^{21}}\times{{2}^{1}}+{22\choose2}~{10}^{18}\times{{2}^{20}}\times{{2}^{2}}+\dots+{22\choose20}~{2}^{2}\times{{2}^{20}}\right]+220\times{{2}^{22}}+{2}^{22}\\\\&=100\times{C_2}+221\times{{2}^{22}}\end{array}

Mas Mus - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...