A Huge Summation it is. #3

n = 1 9 ( 11 × n ) 11 × n \color{#3D99F6}{\displaystyle \sum_{n=1}^9 \left( {11 \times n} \right)^{11 \times n}}

Find the last three digits of the above summation.


Join the Brilliant Classes and enjoy the excellence. Also checkout Foundation Assignment #2 for JEE.


The answer is 987.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mas Mus
May 31, 2015

Let's write all items of the summation:

11 11 = ( 10 + 1 ) 11 = 1000 × C 1 + ( 11 2 ) × 100 × 1 11 + 111 × 1 11 22 22 = ( 20 + 2 ) 22 = 1000 × C 2 + ( 22 2 ) × 100 × 2 22 + 221 × 2 22 33 33 = ( 30 + 3 ) 33 = 1000 × C 3 + ( 33 2 ) × 100 × 3 33 + 331 × 3 33 99 99 = ( 90 + 9 ) 99 = 1000 × C 9 + ( 99 2 ) × 100 × 9 99 + 991 × 9 99 {11}^{11}=(10+1)^{11}=1000\times{C_1}+{11\choose{2}}\times{100}\times{1^{11}}+111\times{1}^{11}\\{22}^{22}=(20+2)^{22}=1000\times{C_2}+{22\choose{2}}\times{100}\times{2^{22}}+221\times{2}^{22}\\{33}^{33}=(30+3)^{33}=1000\times{C_3}+{33\choose{2}}\times{100}\times{3^{33}}+331\times{3}^{33}\\\vdots\\{99}^{99}=(90+9)^{99}=1000\times{C_9}+{99\choose{2}}\times{100}\times{9^{99}}+991\times{9}^{99}

It's clear that 1000 × C 1 , 1000 × C 2 , 1000 × C 3 , , 1000 × C 9 1000\times{C_1}, 1000\times{C_2}, 1000\times{C_3}, \ldots, 1000\times{C_9} are divisible by 1000 1000 , so we just need to find the reminder of all two last items ( m o d 1000 ) \pmod{1000} .

Now, we have

( 11 2 ) × 100 × 1 11 + 111 × 1 11 ( 500 + 111 ) × 1 11 611 × 1 11 ( m o d 1000 ) ( 22 2 ) × 100 × 2 22 + 221 × 2 22 ( 100 + 221 ) × 2 22 321 × 2 22 ( m o d 1000 ) ( 33 2 ) × 100 × 3 33 + 331 × 3 33 ( 800 + 331 ) × 3 33 131 × 3 33 ( m o d 1000 ) ( 99 2 ) × 100 × 9 99 + 991 × 9 99 ( 100 + 991 ) × 9 99 91 × 9 99 ( m o d 1000 ) {11\choose{2}}\times{100}\times{1^{11}}+111\times{1}^{11}\equiv\left(500+111\right)\times{1^{11}}\equiv611\times{1^{11}}\pmod{1000}\\{22\choose{2}}\times{100}\times{2^{22}}+221\times{2}^{22}\equiv\left(100+221\right)\times{2^{22}}\equiv321\times{2^{22}}\pmod{1000}\\{33\choose{2}}\times{100}\times{3^{33}}+331\times{3}^{33}\equiv\left(800+331\right)\times{3^{33}}\equiv131\times{3^{33}}\pmod{1000}\\\vdots\\{99\choose{2}}\times{100}\times{9^{99}}+991\times{9}^{99}\equiv\left(100+991\right)\times{9^{99}}\equiv91\times{9^{99}}\pmod{1000}

By using Euler's theorem, CRT, and the properties of modular arithmetic we will find that

2 22 304 ( m o d 1000 ) 3 33 523 ( m o d 1000 ) 4 44 56 ( m o d 1000 ) 5 55 125 ( m o d 1000 ) 6 66 456 ( m o d 1000 ) 7 77 207 ( m o d 1000 ) 8 88 616 ( m o d 1000 ) 9 99 889 ( m o d 1000 ) {2}^{22}\equiv304\pmod{1000}~~~~~{3}^{33}\equiv523\pmod{1000}~~~~~{4}^{44}\equiv56\pmod{1000}\\{5}^{55}\equiv125\pmod{1000}~~~~~{6}^{66}\equiv456\pmod{1000}~~~~~{7}^{77}\equiv207\pmod{1000}\\{8}^{88}\equiv616\pmod{1000}~~~~~{9}^{99}\equiv889\pmod{1000}

Then, we have left

611 × 1 + 321 × 304 + 131 × 523 + 41 × 56 + 51 × 125 + 161 × 456 + 371 × 207 + 681 × 616 + 91 × 889 611 + 584 + 513 + 296 + 375 + 416 + 797 + 496 + 899 4987 987 ( m o d 1000 ) 611\times{1}+321\times{304}+131\times{523}+41\times{56}+51\times{125}+161\times4{56}+\\371\times{207}+681\times{616}+91\times{889}\\\equiv611+584+513+296+375+416+797+496+899\\\equiv4987\equiv\boxed{987}\pmod{1000}

This is a good solution

Rama Devi - 6 years ago

Log in to reply

i did the same way

Shashank Rustagi - 5 years, 12 months ago
Brock Brown
May 26, 2015

Python 2.7:

1
2
total = sum([(11*n)**(11*n) for n in xrange(1,10)])
print "Answer:", str(total)[-3:]

How to write this type of Computerised Solution? I mean how to write the code in this form? @Brock Brown

Anik Mandal - 6 years ago

Log in to reply

Do you mean the part that's like this?

1
sum([(11*n)**(11*n) for n in xrange(1,10)])

That's called a list comprehension .

Here's an example of a list comprehension that finds the sum of the squares of the first 10 natural numbers:

1
print sum([n*n for n in xrange(10)])

Which is just the shorter version of this:

1
2
3
4
total = 0
for n in xrange(10):
    total += n*n
print total

Does that answer your question, or were you asking something else?

Brock Brown - 6 years ago

Log in to reply

I was able to write the code.But I could not Write it in that form(program format) I want to post a solution as a code..

Anik Mandal - 6 years ago

Log in to reply

@Anik Mandal Oh, this will teach you how to use code blocks.

Brock Brown - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...