A Killer Inequality

Algebra Level 2

Positive reals a a , b b , and c c are such that a + b + c = 3 a+b+c=3 . Find the minimum value of

a a b + 1 + b b c + 1 + c c a + 1 \frac{a}{ab+1} + \frac{b}{bc+1} + \frac{c}{ca+1}


The answer is 1.500000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

a + b + c = 3 1 a + 1 b + 1 c 3 a+b+c=3\implies \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\geq 3 . (A. M. -H. M. inequality).

Hence ( a + 1 c ) + ( b + 1 a ) + ( c + 1 b ) 6 \left (a+\dfrac{1}{c}\right )+\left (b+\dfrac{1}{a}\right )+\left (c+\dfrac{1}{b}\right )\geq 6 ,

i. e. a b + 1 a + b c + 1 b + c a + 1 b 6 \dfrac{ab+1}{a}+\dfrac {bc+1}{b}+\dfrac{ca+1}{b}\geq 6 .

Now ( a b + 1 a + b c + 1 b + c a + 1 c ) ( a a b + 1 + b b c + 1 + c c a + 1 ) 9 \left (\dfrac{ab+1}{a}+\dfrac{bc+1}{b}+\dfrac{ca+1}{c}\right )\left (\dfrac{a}{ab+1}+\dfrac {b}{bc+1}+\dfrac{c}{ca+1}\right )\geq 9 .

So, for the minimum of a b + 1 a + b c + 1 b + c a + 1 c \dfrac{ab+1}{a}+\dfrac{bc+1}{b}+\dfrac{ca+1}{c} ,

the minimum of a a b + 1 + b b c + 1 + c c a + 1 \dfrac{a}{ab+1}+\dfrac{b}{bc+1}+\dfrac{c}{ca+1} is 9 6 = 1.5 \dfrac{9}{6}=\boxed {1.5} .

Nice solution

Mohammed Imran - 1 year, 2 months ago

Similar solution as @Alak Bhattacharya

a a b + 1 + b b c + 1 + c c a + 1 = 1 b + 1 a + 1 c + 1 b + 1 a + 1 c By H o ¨ lder’s inequality ( 1 b + 1 a + 1 c + 1 b + 1 a + 1 c ) ( b + 1 a + c + 1 b + a + 1 c ) ( 1 + 1 + 1 ) ( 1 + 1 + 1 ) 3 By AM-HM inequality ( a a b + 1 + b b c + 1 + c c a + 1 ) ( a + b + c + 9 a + b + c ) ( 3 ) 27 a a b + 1 + b b c + 1 + c c a + 1 3 2 = 1.5 \begin{aligned} \frac a{ab+1} + \frac b{bc+1} + \frac c{ca+1} & = \blue{\frac 1{b+\frac 1a} + \frac 1{c+\frac 1b} + \frac 1{a+\frac 1c}} & \small \blue{\text{By Hölder's inequality}} \\ \left(\blue{\frac 1{b+\frac 1a} + \frac 1{c+\frac 1b} + \frac 1{a+\frac 1c}}\right)\left(b+ \red{\frac 1a} + c + \red{\frac 1b} + a + \red{\frac 1c} \right)(1+1+1) & \ge (1+1+1)^3 & \small \red{\text{By AM-HM inequality}} \\ \left(\frac a{ab+1} + \frac b{bc+1} + \frac c{ca+1}\right)\left(a+b+c + \red{\frac 9{a+b+c}} \right)(3) & \ge 27 \\ \implies \frac a{ab+1} + \frac b{bc+1} + \frac c{ca+1} & \ge \frac 32 = \boxed{1.5} \end{aligned}


References:

Nice solution

Mohammed Imran - 1 year, 2 months ago

Log in to reply

But it's incorrect.

Chew-Seong Cheong - 1 year, 2 months ago

Log in to reply

Sorry. I was in a hurry!

Mohammed Imran - 1 year, 2 months ago

Log in to reply

@Mohammed Imran No, I mean my previous solution was wrong. I have changed a new one.

Chew-Seong Cheong - 1 year, 2 months ago

Log in to reply

@Chew-Seong Cheong oh!!!!!!!!!!!!!!!!!!

Mohammed Imran - 1 year, 2 months ago

I have changed the solution. Thanks to @Alak Bhattacharya for the idea. I mentioned the use of Hölder's inequality and AM-HM inequality.

Chew-Seong Cheong - 1 year, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...