A kind of N.C.E.R.T problem

Calculus Level 2

0 π 2 s e c ( x π 6 ) s e c ( x π 3 ) d x \displaystyle \int_{0}^{\frac{\pi}{2}} sec( x - \frac{\pi}{6})sec( x - \frac{\pi}{3})dx


  • I know it is not a good problem , but please try it once and post your different approaches


The answer is 2.197.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

U Z
Dec 9, 2014

0 π 2 s e c ( x π 6 ) s e c ( x π 3 ) d x \displaystyle \int_{0}^{\frac{\pi}{2}} sec( x - \frac{\pi}{6})sec( x - \frac{\pi}{3})dx

= 0 π 2 1 c o s ( x π 6 ) c o s ( x π 3 ) d x = \displaystyle \int_{0}^{\frac{\pi}{2}} \dfrac{1}{cos(x - \frac{\pi}{6})cos(x - \frac{\pi}{3})}dx

= 0 π 2 2 × 1 2 c o s ( x π 6 ) c o s ( x π 3 ) d x = \displaystyle \int_{0}^{\frac{\pi}{2}} \dfrac{2\times\frac{1}{2}}{cos(x - \frac{\pi}{6})cos(x - \frac{\pi}{3})}dx

= 2 0 π 2 s i n [ ( x π 6 ) ( x π 3 ) ] c o s ( x π 6 ) c o s ( x π 3 ) d x =\boxed{ 2\displaystyle \int_{0}^{\frac{\pi}{2}} \dfrac{sin[(x - \frac{\pi}{6}) - (x - \frac{\pi}{3})]}{cos(x - \frac{\pi}{6})cos(x - \frac{\pi}{3})}dx}

= 2 0 π 2 t a n ( x π 6 ) t a n ( x π 3 ) d x = 2\displaystyle \int_{0}^{\frac{\pi}{2}} tan(x - \frac{\pi}{6}) - tan(x - \frac{\pi}{3})dx

= 2 l n 3 =\boxed{2ln3}

@megh choksi Sir, this is indeed a good problem.

Anuj Shikarkhane - 6 years, 6 months ago

Log in to reply

Please , please i am not a sir

Sir are @Sandeep Bhardwaj @Deepanshu Gupta @Aditya Raut @Ayush Verma and many more

U Z - 6 years, 6 months ago

Log in to reply

Omg ! what did You say ... Please I'am not a Sir , But I'am an Foolish Guy which is very Small brain but enjoys The Beauty of Maths and Physics ! So Please Don't give me such Honour I'am not capable for it ! You r too good in front of me !

Deepanshu Gupta - 6 years, 6 months ago

Log in to reply

@Deepanshu Gupta No ,no i am not good at physics just do maths, indeed you are the too good in front of me

U Z - 6 years, 6 months ago

Same as I did! :)

Pranjal Jain - 6 years, 6 months ago

Log in to reply

Nice , can you try a different approach of(the first problem we study in indefinite integration)

s i n x s i n x + c o s x \displaystyle \int \dfrac{sinx}{sinx + cosx}

U Z - 6 years, 6 months ago

Log in to reply

I guess this might work.

s i n x = 2 t a n x 2 1 + t a n 2 x 2 sinx=\dfrac{2tan\frac{x}{2}}{1+tan^{2}\frac{x}{2}} and c o s x = 1 t a n 2 x 2 1 + t a n 2 x 2 cosx=\dfrac{1-tan^{2}\frac{x}{2}}{1+tan^{2}\frac{x}{2}}

Substitute t a n x 2 = p tan\frac{x}{2}=p

I am a little busy. You may carry on with this.

Pranjal Jain - 6 years, 6 months ago

Log in to reply

@Pranjal Jain Nice!

s i n x 2 s i n ( π 4 + x ) \displaystyle \dfrac{sinx}{\sqrt{2}sin(\dfrac{\pi}{4} + x)}

s i n ( ( π 4 + x ) π 4 ) 2 s i n ( π 4 + x ) \displaystyle \dfrac{sin( (\dfrac{\pi}{4} + x) - \dfrac{\pi}{4})}{\sqrt{2}sin(\dfrac{\pi}{4} + x)}

1 2 1 2 c o t ( x + π 4 ) \displaystyle \int \dfrac{1}{2} - \dfrac{1}{2}cot(x + \dfrac{\pi}{4})

U Z - 6 years, 6 months ago

Log in to reply

@U Z Nice Megh ! = 1 2 ( 2 sin x ) sin x + cos x = 1 2 ( sin x + cos x ) ( cos x sin x ) sin x + cos x = 1 2 1 1 2 cos x sin x sin x + cos x ( f ( x ) f ( x ) ) =\int { \cfrac { \cfrac { 1 }{ 2 } (2\sin { x) } }{ \sin { x } +\cos { x } } } \\ \quad \\ =\quad \cfrac { 1 }{ 2 } \int { \cfrac { (\sin { x } +\cos { x } )-(\cos { x } -\sin { x } ) }{ \sin { x } +\cos { x } } } \\ \\ =\quad \cfrac { 1 }{ 2 } \int { 1 } \quad -\quad \quad \cfrac { 1 }{ 2 } \int { \cfrac { \cos { x } -\sin { x } }{ \sin { x } +\cos { x } } } \quad \quad \quad (\quad \because \quad \cfrac { f^{ ' }\left( x \right) }{ f\left( x \right) } ) .

Deepanshu Gupta - 6 years, 6 months ago

@U Z Oh! How can I forget this! You did this so easily!!

Pranjal Jain - 6 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...