The Relationship Between Sines And Cosines

Geometry Level 4

sin x + 2 cos x + 1 \large \frac{\sin x +2}{\cos x +1}

Find the minimum value of the above expression.


The answer is 0.75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Rishabh Jain
Jun 22, 2016

Relevant wiki: Sum and Difference Trigonometric Formulas - Problem Solving

f ( x ) = sin x + 2 cos x + 1 f(x)=\dfrac{\sin x +2}{\cos x +1}

Use sin x = 2 sin x 2 cos x 2 , 1 + cos x = 2 cos 2 x 2 \small{\color{teal}{\sin x=2\sin\frac x2\cos \frac x2,~1+\cos x=2\cos^2\frac x2}} .

f ( x ) = 2 sin x 2 cos x 2 2 cos 2 x 2 + 2 2 cos 2 x 2 = tan x 2 + sec 2 x 2 1 + tan 2 x 2 = tan 2 x 2 + tan x 2 + 1 = ( tan x 2 + 1 2 ) 2 + 3 4 \begin{aligned}f(x)=&\dfrac{2\sin\frac x2\cos \frac x2}{2\cos^2\frac x2}+\dfrac{2}{2\cos^2\frac x2}\\=&\tan \frac x2+\underbrace{\sec^2\frac x2}_{1+\tan^2\frac x2}\\=&\tan^2\frac x2+\tan \frac x2+1\\=&\left(\tan \frac x2+\dfrac 12\right)^2+\dfrac 34\end{aligned}

Since square of a real quantity is always non negative.

( f ( x ) ) min = 3 4 when tan x 2 = 1 2 (f(x))_{\text{min}}=\dfrac 34 \text{ when } \tan \dfrac x2=\dfrac{-1}{2}

Typo: ( tan x 2 + 1 2 ) 2 + 3 4 \left(\tan \dfrac{x}{2} + \dfrac{1}{2}\right)^2 + \dfrac{3}{4}

( f ( x ) ) min = 3 4 (f(x))_{\text{min}} = \dfrac{3}{4} when tan x 2 = 1 2 \tan \dfrac{x}{2} = -\dfrac{1}{2}

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

Corrected..

Rishabh Jain - 4 years, 11 months ago

Log in to reply

There are two typos...

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

@Hung Woei Neoh Sorry... Done

Rishabh Jain - 4 years, 11 months ago
Chew-Seong Cheong
Jun 22, 2016

Let t = tan x 2 t=\tan \frac x2 , then { sin x = 2 t 1 + t 2 cos x = 1 t 2 1 + t 2 \begin{cases} \sin x = \dfrac {2t}{1+t^2} \\ \cos x = \dfrac {1-t^2}{1+t^2} \end{cases}

Now, we have:

sin x + 2 cos x + 1 = 2 t 1 + t 2 + 2 1 t 2 1 + t 2 + 1 = 2 t + 2 + 2 t 2 1 t 2 + 1 + t 2 = t 2 + t + 1 = ( t + 1 2 ) 2 + 3 4 Since ( t + 1 2 ) 2 0 sin x + 2 cos x + 1 3 4 = 0.75 Minimum occurs when tan x 2 = 1 2 \begin{aligned} \frac {\sin x +2}{\cos x +1} & = \frac {\frac {2t}{1+t^2}+2}{ \frac {1-t^2}{1+t^2}+1} \\ & = \frac {2t+2+2t^2}{1-t^2+1+t^2} \\ & = t^2 + t + 1 \\ & = \color{#3D99F6}{\left(t+\frac 12 \right)^2} + \frac 34 \quad \quad \small \color{#3D99F6}{\text{Since } \left(t+\frac 12 \right)^2 \ge 0} \\ \implies \frac {\sin x +2}{\cos x +1} & \ge \frac 34 = \boxed{0.75} \quad \quad \small \color{#3D99F6}{\text{Minimum occurs when } \tan \frac x2 = - \frac 12} \end{aligned}

If you differntiate the above function w.r.t. x then you eill get two solution from f'(x) which are cosx=-1 or cosx=3/5.

it can be seen that cosx!=-1 so putting cosx=3/5 we get minimum value 7/4

Kushal Bose - 4 years, 11 months ago

Log in to reply

You are right when minimum occurs tan x 2 = 1 2 \tan \frac x2 = -\frac 12 , cos x = 3 5 \implies \cos x = \frac 35 and sin x = 4 5 \sin x = - \frac 45 , sin x + 2 cos x + 1 = 4 5 + 2 3 5 + 1 = 3 4 \implies \frac {\sin x +2}{\cos x +1}= \frac {-\frac 45+2}{\frac 35 +1} = \frac 34 . You may have used sin x = 4 5 \sin x = \frac 45 .

Chew-Seong Cheong - 4 years, 11 months ago

Log in to reply

Yes you are true.

I should take the minimum value

Thanks for explanation

Kushal Bose - 4 years, 11 months ago
Hung Woei Neoh
Jun 23, 2016

Calculus method:

Let f ( x ) = sin x + 2 cos x + 1 f(x) = \dfrac{\sin x + 2}{\cos x+1}

For the expression to be valid, we know that cos x + 1 0 cos x 1 \cos x + 1 \neq 0 \implies \cos x \neq -1

Now, at minimum points, we know that f ( x ) = 0 f'(x) = 0

f ( x ) = ( cos x + 1 ) ( cos x ) ( sin x + 2 ) ( sin x ) ( cos x + 1 ) 2 = cos 2 x + cos x + sin 2 x + 2 sin x ( cos x + 1 ) 2 = 1 + cos x + 2 sin x ( cos x + 1 ) 2 f'(x) = \dfrac{(\cos x + 1)(\cos x) - (\sin x + 2)(-\sin x)}{(\cos x + 1)^2}\\ =\dfrac{\cos^2 x + \cos x + \sin^2 x + 2 \sin x}{(\cos x + 1)^2}\\ =\dfrac{1+\cos x + 2\sin x}{(\cos x + 1)^2}

f ( x ) = 0 1 + cos x + 2 sin x ( cos x + 1 ) 2 = 0 1 + cos x + 2 sin x = 0 1 + cos x = 2 sin x 1 + cos x = 2 1 cos 2 x ( 1 + cos x ) 2 = ( 2 1 cos 2 x ) 2 1 + 2 cos x + cos 2 x = 4 ( 1 cos 2 x ) 1 + 2 cos x + cos 2 x 4 + 4 cos 2 x = 0 5 cos 2 x + 2 cos x 3 = 0 ( 5 cos x 3 ) ( cos x + 1 ) = 0 cos x = 3 5 , cos x = 1 f'(x) = 0\\ \dfrac{1 + \cos x + 2 \sin x}{(\cos x + 1)^2}=0\\ 1+\cos x+2\sin x=0\\ 1+\cos x = -2\sin x\\ 1+\cos x = -2\sqrt{1 - \cos^2 x}\\ (1+\cos x)^2 = \left(-2\sqrt{1 - \cos^2 x}\right)^2\\ 1+2\cos x+\cos^2 x = 4(1-\cos^2 x)\\ 1+2\cos x + \cos^2 x - 4 + 4\cos^2 x = 0\\ 5 \cos^2 x + 2 \cos x - 3 = 0\\ (5\cos x -3)(\cos x+ 1)=0\\ \cos x = \dfrac{3}{5},\;\cos x = -1

Now, we know that the second factor will result in f ( x ) f(x) being undefined, so we ignore it. This means that

cos x = 3 5 sin x = 1 + 3 5 2 = 4 5 \cos x = \dfrac{3}{5} \implies \sin x = \dfrac{1+\frac{3}{5}}{-2} =- \dfrac{4}{5}

Therefore, the minimum value of the expression is 4 5 + 2 3 5 + 1 = 6 5 8 5 = 3 4 = 0.75 \dfrac{-\frac{4}{5}+2}{\frac{3}{5}+1} = \dfrac{\frac{6}{5}}{\frac{8}{5}}=\dfrac{3}{4} = \boxed{0.75}

Note: The minimum value occurs at x = ( 306.87 + 360 n ) x=(306.87+360n)^{\circ} , where n n is an integer

Bonus: My solution is actually incomplete. Prove that the point I found is a minimum point. If you used the second derivative test, you should get f ( x ) = 5 32 > 0 f''(x) = \dfrac{5}{32} > 0

Very good solution. .

Sayandeep Ghosh - 4 years, 9 months ago
Grant Bulaong
Aug 27, 2016

Let a = sin x + 1 a=\sin x +1 , b = cos x + 1 b=\cos x +1 . Then a a and b b satisfy ( a 1 ) 2 + ( b 1 ) 2 = 1 (a-1)^2+(b-1)^2=1 . We look to minimize a + 1 b = k \dfrac{a+1}{b}=k . Through manipulation, we note that a 1 = b k 2 a-1=bk-2 . We have ( a 1 ) 2 + ( b 1 ) 2 = ( b k 2 ) 2 + ( b 1 ) 2 = b 2 ( k 2 + 1 ) b ( 4 k + 2 ) + 5 = 1 (a-1)^2+(b-1)^2=(bk-2)^2+(b-1)^2=b^2(k^2+1)-b(4k+2)+5=1 .

We know that the polynomial b 2 ( k 2 + 1 ) b ( 4 k + 2 ) + 4 = 0 b^2(k^2+1)-b(4k+2)+4=0 has real roots, therefore its discriminant is greater than or equal to zero. ( ( 4 k + 2 ) ) 2 4 ( k 2 + 1 ) ( 4 ) 0 16 k 12 0 k 3 4 = 0.75 \begin{aligned}(-(4k+2))^2-4(k^2+1)(4)\geq 0\\16k-12\geq 0\\k \geq \dfrac{3}{4}=\boxed{0.75}\\ \end{aligned}

Interesting Fact: This problem can share a similar solution to this one.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...