A lusty summation

Algebra Level 4

n = 1 ( 4 n 2 + 4 n + 3 9 2 n 4 n + 1 ) \large \displaystyle \sum_{n=1}^{\infty} \left(\dfrac{4}{n^2+4n+3}-9^{2-n}4^{n+1}\right)

If the value of above summation can be expressed in the form m n -\dfrac{m}{n} , where m m and n n are coprime positive integers, find m n m-n .


The answer is 3848.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Jan 18, 2016

Summation can be broken into two brackets: ( 4 n = 1 1 ( n + 1 ) ( n + 3 ) ) ( 324 n = 1 ( 4 9 ) n ) \large (4 \displaystyle \sum_{n=1}^{\infty} \dfrac{1}{(n+1)(n+3)})-(324 \displaystyle \sum_{n=1}^{\infty}(\dfrac{4}{9})^n) (First bracket is a telescopic series while \small{\color{#EC7300}{\text{(First bracket is a telescopic series while}}} second one is sum of a infinite GP) \small{\color{#EC7300}{\text{second one is sum of a infinite GP)}}} = 2 ( n = 1 1 n + 1 1 n + 3 ) 324 ( n = 1 4 9 1 4 9 ) =2(\displaystyle \sum_{n=1}^{\infty}\dfrac{1}{n+1}-\dfrac{1}{n+3})-324(\displaystyle \sum_{n=1}^{\infty}\dfrac{\frac{4}{9}}{1-\frac{4}{9}}) = 2 ( 1 2 + 1 3 ) 324 ( 4 5 ) =2(\frac{1}{2}+\frac{1}{3})-324(\frac{4}{5}) = 3863 15 =-\dfrac{3863}{15} m n = 3848 \Large\color{magenta}{m-n=3848}

Just one typo -

n = 1 ( 4 n 2 + 4 n + 3 ) = 4 n = 1 ( 1 n 2 + 4 n + 3 ) = 4 2 n = 1 ( 1 ( n + 1 ) 1 ( n + 3 ) ) \displaystyle \sum_{n=1}^{\infty} \left(\frac{4} {n^2+4n+3} \right)=4 \displaystyle \sum_{n=1}^{\infty} \left(\frac{1}{n^2+4n+3}\right)=\frac{4}{2} \displaystyle \sum_{n=1}^{\infty} \left(\frac{1}{(n+1)}-\frac{1}{(n+3)}\right)

Akshat Sharda - 5 years, 4 months ago

Log in to reply

Fixed............. and solution updated..

Rishabh Jain - 5 years, 4 months ago

Log in to reply

Thank you for a great solution and error rectification!

Rohit Udaiwal - 5 years, 4 months ago

Log in to reply

@Rohit Udaiwal No problem.... :)

Rishabh Jain - 5 years, 4 months ago

Rishabh Cool's Cool Solution.

Kushagra Sahni - 5 years, 4 months ago

Log in to reply

T h a n k s \Large\color{forestgreen}{Thanks}

Rishabh Jain - 5 years, 4 months ago

Log in to reply

What is your surname? Which class you in? Which state do you belong to? I am operating brilliant from the app so can't see your profile.

Kushagra Sahni - 5 years, 4 months ago

Log in to reply

@Kushagra Sahni My name is Jain...Rishabh Jain .... 12....Ajmer(Rajasthan)

Rishabh Jain - 5 years, 4 months ago

Same approach.

Niranjan Khanderia - 2 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...