A mash up of two functions

Calculus Level 4

Evaluate I = 0 1 x 6 1 x 2 d x \displaystyle I = \int_{0}^{1} x^{6} \sqrt{1-x^{2}} dx

to 4 decimal places.


The answer is 0.0613.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Deepanshu Gupta
Oct 6, 2014

Wallis Theorem states that :

0 π 2 sin m θ cos n θ d θ = k ( ( m 1 ) ( m 3 ) ( m 5 ) . . . . . . . . . . . 1 o r 2 ) ( ( n 1 ) ( n 3 ) ( n 5 ) . . . . . . . . . . . 1 o r 2 ) ( ( m + n ) ( m + n 2 ) ( m + n 4 ) . . . . . . . . . . . . . . . . . . 1 o r 2 ) w h e r e m , n a r e w h o l e n u m b e r s K = π 2 i f m & n b o t h a r e e v e n . = 1 O t h e r w i s e . \int _{ 0 }^{ \frac { \pi }{ 2 } }{ \sin ^{ m }{ \theta } \cos ^{ n }{ \theta } d\theta } =\quad k\quad \frac { ((m-1)(m-3)(m-5)...........1\quad or\quad 2)((n-1)(n-3)(n-5)...........1\quad or\quad 2)\quad }{ ((m+n)(m+n-2)(m+n-4)..................1\quad or\quad 2) } \\ \\ where\quad m,n\quad are\quad whole\quad numbers\quad \\ \quad K=\quad \frac { \pi }{ 2 } \quad if\quad \quad m\quad \& \quad n\quad both\quad are\quad even.\\ \quad \quad =\quad 1\quad \quad \quad Otherwise.\\ .

Let's Back to the Question

Put x = sin θ x=\sin { \theta } .

d x = cos θ d θ dx=\cos { \theta d\theta }

So given Integral becomes:

I = 0 π 2 sin 6 θ cos 2 θ d θ I=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \sin ^{ 6 }{ \theta } \cos ^{ 2 }{ \theta } d\theta } .

By using Wallis Formula ( m=6 & n=2 )

I = 0 π 2 sin 6 θ cos 2 θ d θ = π 2 ( 5.3.1 ) ( 1 ) ( 8.6.4.2 ) = 5 π 256 I=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \sin ^{ 6 }{ \theta } \cos ^{ 2 }{ \theta } d\theta } \quad =\frac { \pi }{ 2 } \quad \frac { (5.3.1)(1) }{ (8.6.4.2) } =\frac { 5\pi }{ 256 } .

I substituted x {x} = sin u {u} (as 0 \leq x \leq 1 )to get 0 1 s i n 6 ( u ) c o s ( u ) d u = 1 7 [ s i n 7 u ] 0 1 \int_{0}^{1} sin^{6} (u) cos(u) du = \frac{1}{7} [sin^{7} u ]_{0}^{1} but I didn't get the correct answer. Where did I go wrong?

Curtis Clement - 6 years, 3 months ago

Log in to reply

because you have forgotten to substitute the d(x) as d(sinu), which is cosu d(u), and the limits would become 0 to pi/2

Shanthan Kumar - 6 years, 3 months ago
Abhishek Singh
Oct 3, 2014

Clearly I = 1 2 β ( 7 2 , 3 2 ) I = \frac{1}{2} \beta(\frac{7}{2},\frac{3}{2}) Where β ( m , n ) \displaystyle \beta(m,n) is called β \beta function Also by using the properties of β \displaystyle \beta function we can write it in forms of Γ \displaystyle \Gamma function as I = 1 2 Γ ( 7 2 ) Γ ( 3 2 ) Γ ( 7 2 + 3 2 ) I= \frac{1}{2} \frac{\Gamma(\frac{7}{2}) \Gamma(\frac{3}{2})}{\Gamma(\frac{7}{2}+\frac{3}{2})} Hence I = 5 2 × 3 2 × 1 2 × π × 1 2 × π 4 × 3 × 2 × 1 I=\frac{\frac{5}{2} \times \frac{3}{2} \times \frac{1}{2} \times \sqrt{\pi} \times \frac{1}{2} \times \sqrt{\pi}}{4 \times 3 \times 2 \times 1} After solving we get I = 5 π 256 = 0.0613 \displaystyle I= \frac{5 \pi}{256} = \boxed{0.0613}

There is another method of solving this question i.e using WALLI's Formula

Deepanshu Gupta - 6 years, 8 months ago

Log in to reply

You should post it here.

Abhishek Singh - 6 years, 8 months ago

Log in to reply

Okay Done it......!!

Deepanshu Gupta - 6 years, 8 months ago

Log in to reply

@Deepanshu Gupta Yes I know that x = cos θ x = \cos \theta Then that sin m θ cos n θ \displaystyle \int \sin^{m}\theta \cos^{n}\theta direct formula to put 'm and n'

Krishna Sharma - 6 years, 8 months ago

Abhishek Singh It is better if you state that the answer must be in four decimal places because 5 π 256 = 0.0613592315154256 \frac{5\pi}{256}=0.0613592315154256\dots . My answer is wrong because I type 0.06 0.06

Mas Mus - 6 years, 2 months ago

Well to see the first part "clearly" we need to make the substitution x 2 x x^2\mapsto x then it becomes apparent.

A Former Brilliant Member - 6 years, 8 months ago

Use beta function by taking x^2=u

Rishabh Jain
Oct 4, 2014

a long and extended version that i used is by substituting x = s i n θ x= sin\theta then applying the property f ( x ) = f ( a + b x ) f(x)=f(a+b-x) finally adding the two integrals as 2 I = 0 π 2 ( s i n θ ) 2 ( c o s θ ) 2 ( ( s i n θ ) 4 + ( c o s θ ) 4 ) d θ 2I=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ { (sin\theta ) }^{ 2 }{ (cos\theta ) }^{ 2 }({ (sin\theta ) }^{ 4 }+{ (cos\theta ) }^{ 4 }) } d\theta

after some simplification i got 2 I = 0 π 2 ( s i n 2 θ ) 2 4 ( s i n 2 θ ) 4 8 d θ 2I=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { { (sin2\theta ) }^{ 2 } }{ 4 } -\frac { { (sin2\theta ) }^{ 4 } }{ 8 } } d\theta

hence after a long integration we finally get the answer 5 π 256 \boxed{\frac { 5\pi }{ 256 } }

this is only calculus approached solution !!

After substituting x=sin(theta), you can directly evaluate the integral using Walli's formula.

Mayank Khetan - 6 years, 8 months ago

Log in to reply

can you elucidate it using this formula ?

Rishabh Jain - 6 years, 8 months ago

My solution was closer to yours. By substituting x = cos θ x=\cos \theta , I reduced the integral to 1 16 0 π 2 sin 2 θ ( 1 + cos 2 θ ) 2 d θ \frac{1}{16}\int_{0}^{\frac{\pi}{2}} \sin 2\theta (1+\cos 2\theta)^2 d\theta and solved it from there on.

Aakarshit Uppal - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...