A nice integral

Calculus Level 4

If 1 ( ln x x ) 2014 d x \displaystyle \int_{1}^{\infty} \bigg(\frac{\ln x}{x}\bigg)^{2014} dx can be expressed as p ! q r \displaystyle \frac{p!}{q^r} , where p , q , r p,q,r are integers, find p + q + r p+q+r .


The answer is 6042.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Anish Puthuraya
Feb 18, 2014

Let ln x = t \displaystyle \ln x = t
Then,
d x = e t d t \displaystyle dx = e^t dt

The integral simplifies to,

0 t 2014 e 2013 t d t \displaystyle \int\limits_0^{\infty} t^{2014} e^{-2013t} dt

Using IBP, we get,

0 t 2014 e 2013 t d t = t 2014 e 2013 t 2013 0 + 2014 2013 0 t 2013 e 2013 t d t \displaystyle \int\limits_0^{\infty} t^{2014} e^{-2013t} dt = \left.\frac{t^{2014}e^{-2013t}}{-2013}\right|_0^{\infty} + \frac{2014}{2013}\int\limits_0^{\infty} t^{2013}e^{-2013t}dt

I = 0 + 2014 2013 0 t 2013 e 2013 t d t \displaystyle I = 0 + \frac{2014}{2013}\int\limits_0^{\infty} t^{2013}e^{-2013t}dt

Repeating the same procedure, we get,

I = 2014 2013 ( 0 + 2013 2013 0 t 2012 e 2013 t d t ) \displaystyle I = \frac{2014}{2013}(0+\frac{2013}{2013}\int\limits_0^{\infty} t^{2012} e^{-2013t} dt)

Proceeding this way till the power of t \displaystyle t becomes 0 \displaystyle 0 , we get,

I = 2014 2013 × 2013 2013 × × 1 2013 0 e 2013 t d t \displaystyle I = \frac{2014}{2013}\times\frac{2013}{2013}\times\ldots\times\frac{1}{2013}\int\limits_0^{\infty} e^{-2013t} dt

Thus,
I = 2014 ! 201 3 2014 × 1 2013 = 2014 ! 201 3 2015 = p ! q r \displaystyle I = \frac{2014!}{2013^{2014}} \times \frac{1}{2013} = \frac{2014!}{2013^{2015}} = \frac{p!}{q^r}

Hence,
p + q + r = 2014 + 2013 + 2015 = 6042 \displaystyle p+q+r = 2014+2013+2015 = \boxed{6042}

Nice solution. You could have generalised as 1 ( ln x x ) n d x = n ! ( n 1 ) n + 1 \displaystyle \int_{1}^{\infty} \bigg(\frac{\ln x}{x}\bigg)^n dx = \frac{n!}{(n-1)^{n+1}}

jatin yadav - 7 years, 3 months ago

Log in to reply

Yeah. Just that you missed the power n \displaystyle n and the d x \displaystyle dx ...lol.
Just Kidding

Anish Puthuraya - 7 years, 3 months ago

Log in to reply

Edited.

jatin yadav - 7 years, 3 months ago

Log in to reply

@Jatin Yadav Btw can you please post the solution for your previous problem on gravitation.
I tried it by finding the center of gravity and then applying rotation. What went wrong? plz reply

Anish Puthuraya - 7 years, 3 months ago

Log in to reply

@Anish Puthuraya Sure, (did you mean "A rod so long" ?)

jatin yadav - 7 years, 3 months ago

Log in to reply

@Jatin Yadav Yes.

Anish Puthuraya - 7 years, 3 months ago

Log in to reply

@Anish Puthuraya done!

jatin yadav - 7 years, 3 months ago

How did you generalize the equation? I thought the gamma function substitution only worked from 0 to infinity, could you post your method?

Nikhil Pandya - 7 years, 3 months ago

Actually, you don't need to use IBP since 0 t 2014 e 2013 t d t (1) \int_0^\infty t^{2014}e^{-2013t}\,dt\;\;\;\;\;\tag1 can be solved by using substitution. Let u = 2013 t u=2013t and t = u 2013 t=\frac{u}{2013} , then d t = d u 2013 dt=\frac{du}{2013} . Substitute these to ( 1 ) (1) , yield 0 t 2014 e 2013 t d t = 0 ( u 2013 ) 2014 e u d u 2013 = 1 201 3 2015 0 u 2014 e u d u \begin{aligned} \int_0^\infty t^{2014}e^{-2013t}\,dt&=\int_0^\infty \left(\frac{u}{2013}\right)^{2014}e^{-u}\,\frac{du}{2013}\\ &=\frac{1}{2013^{2015}}\int_0^\infty u^{2014}e^{-u}\,du \end{aligned} The last form integral is known as gamma function , that is Γ ( n ) = 0 x n 1 e x d x = ( n 1 ) ! , for n positive integer . \Gamma(n)=\int_0^\infty x^{n-1} e^{-x}\,dx=(n-1)!\;\;\;\text{, for}\,n\text{ positive integer}. Thus, 1 201 3 2015 0 u 2014 e u d u = 2014 ! 201 3 2015 . \frac{1}{2013^{2015}}\int_0^\infty u^{2014}e^{-u}\,du=\frac{2014!}{2013^{2015}}. # Q . E . D . # \text{\# }\mathbb{Q}.\mathbb{E}.\mathbb{D}.\text{\#}

Tunk-Fey Ariawan - 7 years, 3 months ago

Log in to reply

Yeah, I did not know about the gamma function.. btw, how do you write QED that way?

Anish Puthuraya - 7 years, 3 months ago

Log in to reply

My comment doesn't mean to insult you Anish, but if you feel bad about that, I apologize to you my friend. :) You may learn gamma function by the link I attached on my comment. One way of many to derive gamma function is using IBP like you did, so basically you've done a good work. (y) About Q.E.D., I just you this simple TeX code: \text{# }\mathbb{Q}.\mathbb{E}.\mathbb{D}.\text{#}

Tunk-Fey Ariawan - 7 years, 3 months ago

Log in to reply

@Tunk-Fey Ariawan I didn't feel bad my friend...I just said that I didn't know about it, thats all...No need to apologize.
And thanks for the code.

Anish Puthuraya - 7 years, 3 months ago

Did the same way!

Kartik Sharma - 6 years, 5 months ago

After substitution, the integral that you get is a standard integral known as Gamma function .

Abhishek Sinha - 7 years, 3 months ago
Ronak Agarwal
Aug 11, 2014

We write f ( α ) = 1 x α d x = 1 α + 1 f o r α < 1 f(\alpha )=\int _{ 1 }^{ \infty }{ { x }^{ \alpha }dx } =\frac { -1 }{ \alpha +1 } \quad for\quad \alpha <-1

Differentiating both sides with respect to α \alpha

2014 times we get :

( 2014 ) ! ( α + 1 ) 2015 = 1 l n 2014 ( x ) x α d x \frac { -(2014)! }{ { (\alpha +1) }^{ 2015 } } =\int _{ 1 }^{ \infty }{ { ln }^{ 2014 }(x){ x }^{ \alpha }dx }

Simply put α = 2014 \alpha =-2014 to get :

1 ( l n ( x ) x ) 2014 d x = ( 2014 ) ! 2013 2015 \boxed{\int _{ 1 }^{ \infty }{ { (\frac { ln(x) }{ x } })^{ 2014 }dx } =\frac { (2014)! }{ { 2013 }^{ 2015 } }}

Great job . very nice solution

Rohit Shah - 6 years, 5 months ago
Lu Chee Ket
Nov 1, 2015

2014!/ 2013^2015 = (3.2554396263186602540430307685016+) x 10^(-876)

We must apply a genuine technique for this! S (u d v) = u v - S (v d u) of zero u v with 0 to infinity:

Converted into definite integral of [e^(2013 y)] (y^2014) d y from 0 to infinity with y = Ln x,

With integral of [e^(2013 y)] (y^n) d y = I (n)

I (2014) = (2014/ 2013)(2013/ 2013)(2012/ 2013) I (2011) = 2014!/ 2013^2014 I (0)

I (0) = Integral of e^(2013 y) d y from 0 to infinity = 1/ 2013

I (2014) = 2014!/ 2013^2015

2014 + 2013 + 2015 = 6042

Cody Johnson
Feb 22, 2014

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...