A Pre-RMO question! -13

How many two digit positive integer N N are there such that sum of N N and it's reverse is a perfect square?

Note:Reverse of N N means the number you get if you swipe the digits, for example if N = 21 N=21 then reverse of N = 12 N=12


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Zakir Husain
Jun 12, 2020

Let N = 10 p + q N=10p+q and set A = A= { x x = y 2 ; y Z x|x=y^2;y∈Z }

According to question, ( 10 p + q + 10 q + p ) A (10p+q+10q+p)∈A ( 11 p + 11 q ) A (11p+11q)∈A ( 11 ( p + q ) ) A (11(p+q))∈A p + q = 11 m ; m A \Rightarrow p+q=11m;m∈A Now as maximum value of both p p and q q is 9 9 p + q < 18 \therefore p+q<18 Now as p + q = 11 m ; m A m Z + p+q=11m;m∈A\Rightarrow m∈Z^+ therefore p + q p+q is a multiple of 11 11 . As 11 11 and 0 0 are the multiple of 11 11 less than 18 18 p + q = 11 , p + q = 0 \therefore p+q=11,p+q=0 But as 0 < p < 10 , 0 < q < 10 , p Z , q Z 0<p<10,0<q<10,p∈Z,q∈Z therefore p + q 0 p+q≠0 p + q = 11 \therefore p+q=11 Now possible values of p , q p,q such that 0 < p < 10 , 0 < q < 10 , p Z , q Z , p + q = 11 0<p<10,0<q<10,p∈Z,q∈Z,p+q=11 are

p p 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9
q q
1 1 × \red{\times} × \red{\times} × \red{\times} × \red{\times} × \red{\times} × \red{\times} × \red{\times} × \red{\times} × \red{\times}
2 2 × \red{\times} × \red{\times} × \red{\times} × \red{\times} × \red{\times} × \red{\times} × \red{\times} × \red{\times} 92 \blue{92}
3 3 × \red{\times} × \red{\times} × \red{\times} × \red{\times} × \red{\times} × \red{\times} × \red{\times} 83 \blue{83} × \red{\times}
4 4 × \red{\times} × \red{\times} × \red{\times} × \red{\times} × \red{\times} × \red{\times} 74 \blue{74} × \red{\times} × \red{\times}
5 5 × \red{\times} × \red{\times} × \red{\times} × \red{\times} × \red{\times} 65 \blue{65} × \red{\times} × \red{\times} × \red{\times}
6 6 × \red{\times} × \red{\times} × \red{\times} × \red{\times} 56 \blue{56} × \red{\times} × \red{\times} × \red{\times} × \red{\times}
7 7 × \red{\times} × \red{\times} × \red{\times} 47 \blue{47} × \red{\times} × \red{\times} × \red{\times} × \red{\times} × \red{\times}
8 8 × \red{\times} × \red{\times} 38 \blue{38} × \red{\times} × \red{\times} × \red{\times} × \red{\times} × \red{\times} × \red{\times}
9 9 × \red{\times} 29 \blue{29} × \red{\times} × \red{\times} × \red{\times} × \red{\times} × \red{\times} × \red{\times} × \red{\times}
Mahdi Raza
Jun 11, 2020
  • N = 10 a + b N = 10a + b
  • Reverse of N = 10 b + a N = 10b + a
  • Sum of N N and it's reverse = 10 a + b + 10 b + a = 11 ( a + b ) = 10 a + b + 10b + a = 11(a+b)
  • For this to be a perfect square a + b = 11 k 2 a + b = 11k^2 , but since a , b a,b are single digit numbers, their maximum is 18.
  • Thus we solve for a + b = 11 a+b = 11 . There are 8 \boxed{8} such solutions

@Zakir Husain , more PRMO questions please

Mahdi Raza - 1 year ago

Let such a number be 10 a + b 10a+b , where 0 < a 9 0<a\leq 9 and 0 b 9 0\leq b\leq 9 are the digits of the number. Then

11 ( a + b ) 11(a+b) must be a perfect square a + b \implies a+b must be a square multiple of 11 11 . Since a + b 18 a+b\leq 18 , therefore a + b = 11 a+b=11 . There are 8 \boxed 8 such possible combinations of ( a , b ) (a, b) :

( a , b ) = ( 2 , 9 ) , ( 3 , 8 ) , ( 4 , 7 ) , ( 5 , 6 ) , ( 6 , 5 ) , ( 7 , 4 ) , ( 8 , 3 ) , ( 9 , 2 ) (a, b) =(2,9),(3,8),(4,7),(5,6),(6,5),(7,4),(8,3),(9,2) .

Can you make a note showing your solution, @Zakir Husain ?

Log in to reply

@Yajat Shamji - Are you talking about solution to this problem?

Zakir Husain - 1 year ago

Log in to reply

I've read @Mahdi Raza and @Alak Bhattacharya 's solutions, but I still don't understand it. I believe your solution will alleviate my doubts...

Log in to reply

@A Former Brilliant Member @Yajat Shamji , what did you not understand in particular?

Mahdi Raza - 1 year ago

Log in to reply

@Mahdi Raza Like, does the two-digit number N N 's sum has to be a perfect square when reversed as well? @Mahdi Raza , @Alak Bhattacharya , @Zakir Husain

Log in to reply

@A Former Brilliant Member Neither N N nor it's reverse has to be a perfect square. Instead, their sum has to be a perfect square.

Mahdi Raza - 1 year ago

Log in to reply

@Mahdi Raza Edited my comment - there was a mistake! @Mahdi Raza

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...