A present to Mehul Arora for his Birthday

Geometry Level 5

cos ( 4 x ) + cos 2 ( 3 x ) + cos 3 ( 2 x ) + cos 4 ( x ) = 0 \large \cos(4x)+\cos^2(3x)+\cos^3(2x)+\cos^4(x)=0

How many solutions are there for the above expression given π x π -\pi \leq x \leq \pi ?


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let us express all the four terms in terms of cos ( 2 x ) \cos (2x) .

{ cos ( 4 x ) = 2 cos 2 ( 2 x ) 1 cos 2 ( 3 x ) = ( 4 cos 3 x 3 cos x ) 2 = 1 2 ( 4 cos 3 ( 2 x ) 3 cos ( 2 x ) + 1 ) cos 3 ( 2 x ) = cos 3 ( 2 x ) cos 4 ( x ) = 1 4 ( 1 + cos ( 2 x ) ) 2 = 1 4 ( cos 2 ( 2 x ) + 2 cos ( 2 x ) + 1 ) \begin{cases} \cos (4x) & & = 2 \cos^2 (2x) - 1 \\ \cos^2 (3x) & = (4\cos^3 x - 3 \cos x)^2 & = \frac{1}{2} (4\cos^3 (2x)-3\cos (2x) + 1) \\ \cos^3 (2x) & & = \cos^3 (2x) \\ \cos^4 (x) & = \frac{1}{4}(1+\cos (2x))^2 & = \frac{1}{4}(\cos^2 (2x) + 2\cos (2x)+1) \end{cases}

Therefore, we have:

cos ( 4 x ) + cos 2 ( 3 x ) + cos 3 ( 2 x ) + cos 4 ( x ) = 0 3 cos 3 ( 2 x ) + 9 4 cos 2 ( 2 x ) cos ( 2 x ) 1 4 = 0 12 cos 3 ( 2 x ) + 9 cos 2 ( 2 x ) 4 cos ( 2 x ) 1 = 0 As x = π 2 is a root, ( cos ( 2 x ) + 1 ) ( 12 cos 2 ( 2 x ) 3 cos ( 2 x ) 1 ) = 0 \begin{aligned} \cos(4x)+\cos^2(3x)+\cos^3(2x)+\cos^4(x) & = 0 \\ 3\cos^3(2x) + \frac{9}{4}\cos^2(2x) - \cos (2x) - \frac{1}{4} & = 0 \\ 12\cos^3(2x) + 9\cos^2(2x) - 4\cos (2x) - 1 & = 0 \quad \quad \small \color{#3D99F6}{\text{As }x=\frac{\pi}{2} \text{ is a root,}} \\ (\cos(2x) +1)(12\cos^2 (2x) - 3\cos (2x) -1) & = 0 \end{aligned}

{ cos ( 2 x ) = 1 2 x = ± π x = ± π 2 2 solutions cos ( 2 x ) = 3 57 24 2 x = { ± 1.7615 x = ± 0.8808 ± ( 2 π 1.7615 ) x = ± 2.2608 4 solutions cos ( 2 x ) = 3 + 57 24 2 x = { ± 1.1157 x = ± 0.5578 ± ( 2 π 1.1157 ) x = ± 2.5838 4 solutions \begin{cases} \cos (2x) = - 1 & \Rightarrow 2x = \pm \pi \quad \quad \quad \quad \quad \quad \quad \Rightarrow x = \pm \frac{\pi}{2} & 2 \text{ solutions} \\ \cos (2x) = \frac{3 - \sqrt{57}}{24} & \Rightarrow 2x = \begin{cases} \pm 1.7615 & \Rightarrow x = \pm 0.8808 \\ \pm(2\pi - 1.7615) & \Rightarrow x = \pm 2.2608 \end{cases} & 4 \text{ solutions} \\ \cos (2x) = \frac{3 + \sqrt{57}}{24} & \Rightarrow 2x = \begin{cases} \pm 1.1157 & \Rightarrow x = \pm 0.5578 \\ \pm(2\pi - 1.1157) & \Rightarrow x = \pm 2.5838 \end{cases} & 4 \text{ solutions} \end{cases}

Therefore, there are 10 \boxed{10} solutions.

P/S: Wondering which Mehul is that.

Nice solution! +1. I was referring to Mehul Arora.

Sharky Kesa - 5 years, 3 months ago

Log in to reply

They are a few Mehul. I understand that it means "clouds" in Hindi.

Chew-Seong Cheong - 5 years, 3 months ago

Log in to reply

This is his acc url :-

https://brilliant.org/profile/mehul-e5up10/

Ashish Menon - 5 years, 3 months ago

Log in to reply

@Ashish Menon I am following him.

Chew-Seong Cheong - 5 years, 3 months ago

Log in to reply

@Chew-Seong Cheong Oh ok, i too follow @Mehul Arora

Ashish Menon - 5 years, 3 months ago

Again , same solution!!

Aakash Khandelwal - 5 years, 3 months ago
Andreas Wendler
Mar 10, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...