Do we need to construct decagons?

Geometry Level 3

2 tan ( π 10 ) + 3 sec ( π 10 ) 4 cos ( π 10 ) = ? 2\tan \left( \frac{\pi}{10} \right) + 3 \sec \left( \frac{\pi}{10} \right) - 4 \cos \left ( \frac{\pi}{10}\right) = \ ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jun 12, 2015

2 tan π 10 + 3 sec π 10 4 cos π 10 = 2 sin π 10 cos π 10 + 3 cos π 10 4 cos π 10 = 2 sin π 10 + 3 4 cos 2 π 10 cos π 10 = 2 cos 2 π 5 + 3 2 ( 2 cos 2 π 10 1 + 1 ) cos π 10 = 2 cos 2 π 5 + 3 2 cos π 5 2 cos π 10 = 2 cos 2 π 5 2 cos π 5 + 1 cos π 10 = 2 cos 2 π 5 + 2 cos 4 π 5 + 1 cos π 10 = 2 ( cos 2 π 5 + cos 4 π 5 ) + 1 cos π 10 = 2 ( 1 2 ) + 1 cos π 10 = 0 \begin{aligned} 2\tan{\frac{\pi}{10}} + 3\sec {\frac{\pi}{10}} - 4 \cos {\frac{\pi}{10}} & = \frac{2\sin{\frac{\pi}{10}}}{\cos{\frac{\pi}{10}}} + \frac{3}{\cos{\frac{\pi}{10}}} - 4\cos{\frac{\pi}{10}} \\ & = \frac {2\sin{\frac{\pi}{10}}+3 - 4\cos^2{\frac{\pi}{10}}} {\cos{\frac{\pi}{10}}} \\ & = \frac {2\cos{\frac{2\pi}{5}}+3 - 2\left( 2\cos^2{\frac{\pi}{10}}-1+1 \right)} {\cos{\frac{\pi}{10}}} \\ & = \frac {2\cos{\frac{2\pi}{5}}+3 - 2\cos{\frac{\pi}{5}} -2 } {\cos{\frac{\pi}{10}}} \\ & = \frac {2\cos{\frac{2\pi}{5}} - 2\cos{\frac{\pi}{5}} + 1 } {\cos{\frac{\pi}{10}}} \\ & = \frac {2\cos{\frac{2\pi}{5}} + 2\cos{\frac{4\pi}{5}} + 1 } {\cos{\frac{\pi}{10}}} \\ & = \frac {2 \color{#3D99F6}{\left( \cos{\frac{2\pi}{5}} + \cos{\frac{4\pi}{5}} \right)} + 1 } {\cos{\frac{\pi}{10}}} \\ & = \frac {2 \color{#3D99F6}{\left( -\frac{1}{2} \right)} + 1 } {\cos{\frac{\pi}{10}}} = \boxed{0} \end{aligned}

Moderator note:

How can one tell that 4 sin 2 π 10 + 2 sin π 10 1 = 0 4 \sin ^2 \frac{\pi}{10} + 2 \sin \frac{ \pi}{10} - 1 = 0 ?

That would have been the numerator if we replaced cos 2 π 10 \cos^2 \frac{ \pi }{10} with 1 sin 2 π 10 1 - \sin ^2 \frac{ \pi}{10} in the 2nd line.

how you know that the blue expression is equal to -1/2

Aldo Mauricio - 5 years, 11 months ago

Log in to reply

z 10 = e k π 5 i = 1 z^{10} = e^{\frac{k\pi}{5}i} = 1 , the 1 0 t h 10^{th} roots of unity. Using Argand's diagram we can see that cos π 5 + cos 3 π 5 = 1 2 \cos{\frac{\pi}{5}} + \cos{\frac{3\pi}{5}} = \frac{1}{2} and cos 2 π 5 + cos 4 π 5 = 1 2 \cos{\frac{2\pi}{5}} + \cos{\frac{4\pi}{5}} = -\frac{1}{2} . There are similar identities such as cos π 3 = 1 2 \cos{\frac{\pi}{3}} = \frac{1}{2} and cos 2 π 3 = 1 2 \cos{\frac{2\pi}{3}} = -\frac{1}{2} ; cos π 7 + cos 3 π 7 + cos 5 π 7 = 1 2 \cos{\frac{\pi}{7}} + \cos{\frac{3\pi}{7}} + \cos{\frac{5\pi}{7}} = \frac{1}{2} and cos 2 π 7 + cos 4 π 7 + cos 6 π 7 = 1 2 \cos{\frac{2\pi}{7}} + \cos{\frac{4\pi}{7}} + \cos{\frac{6\pi}{7}} = -\frac{1}{2} ; and for 9 , 11 , 13 , . . . 9,11,13,... .

Chew-Seong Cheong - 5 years, 11 months ago

Log in to reply

if e to pi by 5 is equal to one does it mean it doesn't have an imaginary part ?

Aldo Mauricio - 5 years, 11 months ago

Log in to reply

@Aldo Mauricio Aldo, sorry, I missed out the k k earlier. When z 10 = 1 z^{10} = 1 means that there are altogether 10 10 complex roots e 2 k π i 10 = e k π i 5 = cos k π 5 + i sin k π 5 e^{\frac{2k\pi i}{10}} = e^{\frac{k \pi i}{5}} = \cos{\frac{k \pi}{5}} + i \sin{\frac{k \pi}{5}} , where k = 0 , 1 , 2 , . . . 9 k = 0,1,2,...9 . When k = 0 k=0 , then z = e 0 = 1 z=e^0=1 , the other 9 9 roots have imaginary part.

Chew-Seong Cheong - 5 years, 11 months ago

4 sin 2 π 10 + 2 sin π 10 1 = 2 ( 1 2 sin 2 π 10 ) + 2 + 2 cos ( π 2 π 10 ) 1 = 2 cos π 5 + 2 cos 2 π 5 + 1 = 2 cos 4 π 5 + 2 cos 2 π 5 + 1 = 2 ( 1 2 ) + 1 = 0 \begin{aligned} 4\sin^2{\frac{\pi}{10}} + 2\sin{\frac{\pi}{10}} - 1 & = -2(1-2\sin^2{\frac{\pi}{10}}) +2 + 2\cos{\left(\frac{\pi}{2} - \frac{\pi}{10}\right)} - 1 \\ & = -2\cos{\frac{\pi}{5}} + 2\cos{\frac{2\pi}{5}} + 1 \\ & = 2\cos{\frac{4\pi}{5}} + 2\cos{\frac{2\pi}{5}} + 1 \\ & = 2\left(-\frac{1}{2}\right) + 1 \\ & = \boxed{0} \end{aligned}

Chew-Seong Cheong - 5 years, 11 months ago
Pi Han Goh
Jun 12, 2015

Let x = π 10 x = \frac{\pi}{10} , then cos ( 2 x ) = sin ( 3 x ) \cos(2x) = \sin \left( 3x \right) . By applying the double angle formula and triple angle formula, and letting y = sin ( x ) y = \sin(x) , we have 1 2 y 2 = 4 y 3 + 3 y ( y 1 ) ( 4 y 2 + 2 y 1 ) = 0 1 - 2y^2 = -4y^3 + 3y \Rightarrow (y-1)(4y^2 + 2y-1) = 0 . It's easy to easy that y 1 y\ne 1 so we can cancel out the factor ( y 1 ) (y-1) . Reverse the process:

4 y 2 + 2 y 1 = 0 2 y + 3 4 ( 1 y 2 ) = 0 2 sin ( x ) + 3 4 cos 2 ( x ) = 0 2 tan ( x ) + 3 sec ( x ) 4 cos ( x ) = 0 \begin{aligned} 4y^2 + 2y - 1 &=& 0 \\ 2y + 3 - 4(1-y^2) &=& 0 \\ 2\sin(x) + 3 - 4\cos^2(x) &=& 0 \\ 2\tan(x) + 3\sec(x) - 4\cos(x) &=& \boxed 0 \end{aligned}

Moderator note:

That's one way to find the minimal polynomial of sin π 10 \sin \frac{ \pi }{10} .

Alternatively, you can use sin 5 θ \sin 5 \theta , and factorize it from there.

Here's a dumb alternative approach:

Claim : 2 tan ( π 10 ) + 3 sec ( π 10 ) 4 cos ( π 10 ) = 0 2\tan \left( \frac{\pi}{10} \right) + 3 \sec \left( \frac{\pi}{10} \right) - 4 \cos \left ( \frac{\pi}{10}\right) = 0 .

Proof : Suppose otherwise, that is the equation is false. We begin by letting x = π 10 x =\frac{\pi}{10} , then 2 sin ( x ) + 3 4 cos 2 ( x ) 0 2\sin(x) + 3 - 4\cos^2(x) \ne 0 , applying the Pytharoas identites and set sin ( x ) \sin(x) as the subject and via quadratic formula, we get sin ( x ) 5 ± 1 4 \sin(x) \ne \frac{\sqrt5 \pm 1}{4} . However one can easily rule out that sin ( x ) 5 + 1 4 > 1 2 = sin ( π 6 ) \sin(x) \ne \frac{\sqrt5 + 1}{4} > \frac12 = \sin\left(\frac\pi 6 \right) . So it's just left to show that the equation sin ( x ) 5 1 4 \sin(x) \ne \frac{\sqrt5 - 1}{4} must be false. Consider sin ( 4 x ) = cos ( x ) \sin(4x) = \cos(x) , apply the double angle formula repeatedly, we get 4 sin ( x ) cos ( 2 x ) = 1 4 sin ( x ) ( 1 2 sin 2 ( x ) ) = 1 4\sin(x) \cos(2x) = 1 \Rightarrow 4\sin(x) (1-2\sin^2 (x)) = 1 , then ( 5 1 ) ( 1 2 ( 5 1 4 ) 2 ) 1 (\sqrt5 - 1) \left(1 - 2\left(\frac{\sqrt 5-1}4\right)^2 \right) \ne 1 which is absurd. Hence, our assumption must be wrong therefore the answer must be 0.

Pi Han Goh - 6 years ago

Challenge Master: I've considered solving for sin ( 5 θ ) 1 = 0 \sin(5\theta) - 1 = 0 by quintuple angle formula, but the further factorization of ( x 1 ) ( 16 x 4 + 16 x 3 4 x 2 4 x + 1 ) (x-1)(16x^4 + 16x^3-4x^2 -4x + 1) to ( x 1 ) ( 4 x 2 + 2 x 1 ) 2 (x-1)(4x^2+2x-1)^2 is not something that is obvious. Is there a quick way to determine whether this quartic factor is simply a square of a quadratic factor? And I also noticed a pattern that by converting the expression sin ( ( 2 n + 1 ) θ ) 1 \sin((2n+1)\theta) - 1 via Tchebyshev polynomials, we are always left with a factor of ( x 1 ) (x-1) and a polynomial of degree n n with multiplicity of 2. Is that a coincidence? For prime ( n n ).

Pi Han Goh - 6 years ago
Noel Lo
Sep 3, 2015

Interesting question!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...