What A Sum!

Algebra Level 3

1 2 + 2 2 1 2 + 2 2 + 3 2 2 3 + . . . + 100 3 2 + 100 4 2 1003 1004 + 100 4 2 + 100 5 2 1004 1005 {\large \frac{1^2 + 2^2}{1 \cdot 2} + \frac{2^2 + 3^2}{ 2 \cdot 3} + . . . + \frac{1003^2 + 1004^2}{ 1003 \cdot 1004} + \frac{1004^2 + 1005^2}{1004 \cdot 1005}}

What is the nearest integer in the simplified form of the expression above?


The answer is 2009.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Yellow Tomato
Oct 24, 2015

1 2 + 2 2 1 2 + 2 2 + 3 2 2 3 + . . . + 100 3 2 + 100 4 2 1003 1004 + 100 4 2 + 100 5 2 1004 1005 = ? \color{#EC7300}{\large \large \large \large \frac{1^2 + 2^2}{1 \cdot 2} + \frac{2^2 + 3^2}{ 2 \cdot 3} + . . . + \frac{1003^2 + 1004^2}{ 1003 \cdot 1004} + \frac{1004^2 + 1005^2}{1004 \cdot 1005} = \ ? }

Simplify for each value:

1 2 + 2 2 1 2 + 2 2 + 3 2 2 3 + . . . + 100 3 2 + 100 4 2 1003 1004 + 100 4 2 + 100 5 2 1004 1005 \color{#3D99F6}{ \large \large \large \large \frac{1^2 + 2^2}{1 \cdot 2} + \frac{2^2 + 3^2}{ 2 \cdot 3} + . . . + \frac{1003^2 + 1004^2}{ 1003 \cdot 1004} + \frac{1004^2 + 1005^2}{1004 \cdot 1005}}

n 2 + ( n + 1 ) 2 n ( n + 1 ) \color{#3D99F6}{\large \Rightarrow \frac {n^2 + (n+1)^2}{n \cdot (n+1)}}

n 2 n ( n + 1 ) + ( n + 1 ) 2 n ( n + 1 ) \color{#3D99F6}{\large \Rightarrow \frac{n^2}{n(n + 1)} + \frac{ (n + 1)^2}{n(n + 1)}}

n + 1 1 n + 1 + n + 1 n \color{#3D99F6}{\large \Rightarrow \frac{ n + 1 - 1}{n + 1} + \frac{ n + 1}{n}}

1 1 n + 1 + 1 + 1 n \color{#3D99F6}{ \large \Rightarrow 1 - \frac{1}{n+1} + 1 + \frac{1}{n}}

1 n 1 n + 1 + 2 \color{#3D99F6}{\large \Rightarrow \frac{1}{n} - \frac{1}{n + 1} + 2} .

Let's examine the pattern:

( 1 1 2 + 2 ) + ( 1 2 1 3 + 2 ) . . . ( 1 1003 1 1004 + 2 ) + ( 1 1004 1 1005 + 2 ) \color{#D61F06}{\large (1 - \frac{1}{2} + 2) + (\frac{1}{2} - \frac{1}{3} + 2) . . . (\frac{1}{1003} - \frac{1}{1004} + 2) + (\frac{1}{1004} - \frac{1}{1005} + 2)}

Cancel out positive and negative terms to leave us with:

2 1004 + 1 1 1005 \color{#69047E}{\large 2 \cdot 1004 + 1 - \frac{1}{1005}}

Simplify:

2008 + 1004 1005 2008.999 \color{#20A900}{ \large 2008 + \frac{1004}{1005} \approx 2008.999 }

Is that pink? Am I color blind?

Vincent Miller Moral - 5 years, 7 months ago

Log in to reply

Same here.

Vishal Yadav - 5 years, 7 months ago

It's blue now. That pink was ghastly.

Andrew Ellinor - 5 years, 7 months ago

Log in to reply

Haha pink was ghastly. My bad

Yellow Tomato - 5 years, 7 months ago

Log in to reply

@Yellow Tomato No problem! Just easier for those who are color blind to read now.

Andrew Ellinor - 5 years, 7 months ago

Good answer. Can somebody explain about how to get the 1-1/1005 part? I'm confused.

d k - 5 years, 7 months ago

Log in to reply

In the series with the 1 n \frac{1}{n} part the 1 is 1 1 \frac{1}{1} and the 1 1005 - \frac{1}{1005} which doesn't get canceled out

Yellow Tomato - 5 years, 7 months ago

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
You may check the Internet about telescoping series.
1/n - 1/(n+1)

For n=1:
1/1 - 1/2

For n=2:
1/2 - 1/3

For n=3:
1/3 - 1/4

.
.
.

For n=1003:
1/1003 - 1/1004

For n=1004:
1/1004 - 1/1005

If you add all the results, 1/2, -1/2, 1/3, -1/3,...1/1004, -1/1004 will just cancel

Vincent Miller Moral - 5 years, 7 months ago

same way,but i answered first 2008, then 2009. perhaps the question could be worded better. the integer of might mean integer part not nearest integer.

Aareyan Manzoor - 5 years, 7 months ago

Is 2008.999 an integer as per question? I think the question should be worded as "What is the nearest integer in the most simplified form of the expression above?"

Devendra Kumar Singh - 5 years, 7 months ago

Nice problem and solution. Perhaps rather than "most simplified form", (which I found confusing), it would be less ambiguous to simply ask for the nearest integer.

Brian Charlesworth - 5 years, 7 months ago
Zakir Dakua
Nov 4, 2015

The series can be rewritten as n 2 + ( n + 1 ) 2 n ( n + 1 ) = 2 n 2 + 2 n + 1 n 2 + n \frac { n^{2}+(n+1)^{2} } {n(n+1)} = \frac {2n^{2}+2n+1} {n^2+n}

Which is equivalent to 2 + 1 n 2 + n = 2 + 1 n 1 n + 1 2 + \frac {1}{n^{2}+n}= 2 + \frac{1}{n} - \frac{1}{n+1}

So we can rewrite it as 2+ 1 1 1 2 \frac{1}{1} - \frac{1}{2} + 2 + 1 2 1 3 \frac{1}{2} - \frac{1}{3} + ... + 2 + 1 1004 1 1005 \frac{1}{1004} - \frac{1}{1005}

= 2 × 1004 2 \times 1004 + 1 1 1 1005 \frac{1}{1} - \frac{1}{1005}

= 2009 - 1 1005 \frac{1}{1005} 2009 \approx 2009

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...