A Reading Mistake :)

Calculus Level 5

0 arctan ( x ) log ( 1 + x 2 ) 1 + x 2 d x = π 2 A log 2 + B C ζ ( 3 ) \int_{0}^{\infty} \dfrac{\arctan{(x)}\log{(1+x^2)}}{1+x^2}\mathrm{d}x=\dfrac{\pi^2}{A} \log {2}+\dfrac{B}{C} \zeta (3) A , B A, \ B and C C are integers. B B and C C co-prime. Find A + B + C A+B+C

This problem is the result of my carelessness :) Here's the original problem.


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ronak Agarwal
Feb 15, 2015

I won't be providing justification of my steps :

Put x = t a n ( y ) x=tan(y) to get our integral as :

I = 0 π 2 y l n ( s e c 2 y ) d y \displaystyle I=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ yln({ sec }^{ 2 }y)dy }

I = ( 2 ) 0 π 2 y l n ( c o s ( y ) ) d y \displaystyle I=(-2)\int _{ 0 }^{ \frac { \pi }{ 2 } }{ yln(cos(y))dy }

Now we would be calculating : J = 0 π 2 y l n ( c o s ( y ) ) d y \displaystyle J = \int _{ 0 }^{ \frac { \pi }{ 2 } }{ yln(cos(y))dy }

Now c o s ( x ) = e i x + e i x 2 \displaystyle cos(x) = \frac{e^{ix}+e^{-ix}}{2} .

Hence we have :

J = 0 π 2 y l n ( e i y + e i y 2 ) d y \displaystyle J=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ yln(\dfrac { { e }^{ iy }+{ e }^{ -iy } }{ 2 } )dy }

J = 0 π 2 y l n ( 1 + e 2 i y ) d y 0 π 2 y ( l n ( 2 ) + i y ) d y \displaystyle J=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ yln(1+{ e }^{ 2iy })dy } - \int _{ 0 }^{ \frac { \pi }{ 2 } }{ y(ln(2)+iy)dy }

I will be using the taylor expansion of l n ( 1 + x ) ln(1+x) we would be getting :

J = 0 π 2 y r = 1 ( 1 ) r 1 r e ( 2 i r y ) d y ( π 2 8 l n ( 2 ) + π 3 i 24 ) \displaystyle J=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ y\sum _{ r=1 }^{ \infty }{ \dfrac { { (-1) }^{ r-1 } }{ r } { e }^{ (2iry) } } dy } - (\dfrac { { \pi }^{ 2 } }{ 8 } ln(2)+\dfrac { { \pi }^{ 3 }i }{ 24 })

Let :

K = r = 1 ( 1 ) r 1 r 0 π 2 y e 2 i r y d y K= \sum _{ r=1 }^{ \infty }{ \frac { { (-1) }^{ r-1 } }{ r } \int _{ 0 }^{ \frac { \pi }{ 2 } }{ y{ e }^{ 2iry }dy } }

Put 2 i r y = x 2iry =x , Note in this step my path of this complex integration is a straight line between 0 , r π i 0 , r\pi i

K = r = 1 ( 1 ) r 4 r 3 0 r π i x e x d x \displaystyle K=\sum _{ r=1 }^{ \infty }{ \frac { { (-1) }^{ r } }{ { 4r }^{ 3 } } \int _{ 0 }^{ r\pi i }{ { xe }^{ x }dx } }

K = r = 1 ( 1 ) r 4 r 3 ( ( r π i 1 ) ( 1 ) r + 1 ) \Rightarrow K=\sum _{ r=1 }^{ \infty }{ \frac { { (-1) }^{ r } }{ { 4r }^{ 3 } } ((r\pi i-1){ (-1) }^{ r }+1) }

K = ( π i ) r = 1 1 4 r 2 + r = 1 1 + ( 1 ) r 4 r 3 \displaystyle K = (\pi i)\sum _{ r=1 }^{ \infty }{ \frac { 1 }{ { 4r }^{ 2 } } } +\sum _{ r=1 }^{ \infty }{ \frac { -1+{ (-1) }^{ r } }{ { 4r }^{ 3 } } }

K = ( π i 4 ) ζ ( 2 ) + ( 1 2 ) ( 1 + 1 3 3 + 1 5 3 + . . . . . . . ) K=(\frac { \pi i }{ 4 } )\zeta (2)+(\frac { -1 }{ 2 } )(1+\frac { 1 }{ { 3 }^{ 3 } } +\frac { 1 }{ { 5 }^{ 3 } } +.......)

( π i 4 ) ζ ( 2 ) + ( 1 2 ) ( ( 1 + 1 2 3 + 1 3 3 + . . . . . . . ) 1 8 ( 1 + 1 2 3 + 1 3 3 + . . . . . . . ) ) (\frac { \pi i }{ 4 } )\zeta (2)+(\frac { -1 }{ 2 } )((1+\frac { 1 }{ 2^{ 3 } } +\frac { 1 }{ { 3 }^{ 3 } } +.......)-\frac { 1 }{ 8 } (1+\frac { 1 }{ 2^{ 3 } } +\frac { 1 }{ { 3 }^{ 3 } } +.......))

K = 4 i π ζ ( 2 ) 7 ζ ( 3 ) 16 K= \frac { 4i\pi \zeta (2)-7\zeta (3) }{ 16 }

Putting the value of K K in J J we get :

7 ζ ( 3 ) 16 π 2 l n ( 2 ) 8 + i ( 6 ζ ( 2 ) π 2 4 ) \frac { -7\zeta (3) }{ 16 } -\frac { { \pi }^{ 2 }ln(2) }{ 8 } +i(\frac { 6\zeta (2)-{ \pi }^{ 2 } }{ 4 } )

Interesting thing to observe that since J J is purely real hence we have :

ζ ( 2 ) = π 2 6 \zeta(2)=\frac{{\pi}^{2}}{6}

And we have proved an very interesting result.

Also we get :

J = 7 ζ ( 3 ) 16 π 2 l n ( 2 ) 8 J=\frac { -7\zeta (3) }{ 16 } -\frac { { \pi }^{ 2 }ln(2) }{ 8 }

Finally we have :

I = π 2 l n ( 2 ) 4 + 7 ζ ( 3 ) 8 I=\frac { { \pi }^{ 2 }ln(2) }{ 4 } +\frac { 7\zeta (3) }{ 8 }

Wow! It looks like there is some "Shakalaka Boom Boom" here. It is exactly the same as I did.

Kartik Sharma - 5 years, 11 months ago

Hi ronak , can u elaborate Note in this step my path of this complex integration is a straight line between and how u obtained K K in the very next step

Tanishq Varshney - 6 years ago

@Ronak Agarwal can u help me out with that step

Tanishq Varshney - 6 years ago

Log in to reply

Just notice that since the limits are comlpex I have to state the path, that's it, there's nothing more in it.

You can also proceed without the substitution keeping the limits real but the integrand complex that would yield the same result.

Ronak Agarwal - 6 years ago

Log in to reply

i am sorry but i cannot understand ur statement and the very next step, how in denominator r r changed to 4 r 3 4r^3 . Plz reply

Tanishq Varshney - 6 years ago

Log in to reply

@Tanishq Varshney Try to apply the substitution carefully, you will get it.

Ronak Agarwal - 6 years ago

Log in to reply

@Ronak Agarwal oh fish , my bad i just ate one of the r r any way thanx for replying

Tanishq Varshney - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...