A simple double integral.

Calculus Level 5

Let : I = 0 1 0 1 { x y } d x d y I= \int_0^1 \int_0^1 \left\{ \frac{x}{y} \right\} \ \mathrm{d}x\ \mathrm{d}y Find 1000 I \lfloor1000I\rfloor .


{ x } \{x\} denotes to the fractional part of x x , and x \lfloor x\rfloor denotes to the floor function for x x .

Remark : Numerical integration using software can be wrong.


The answer is 461.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pranav Arora
Jul 15, 2014

For the integral with respect to x x , use the substitution x y = t \dfrac{x}{y}=t .

I = 0 1 0 1 / y y { t } d t d y = 0 1 0 1 y { t } d t d y + 1 0 1 / t y { t } d y d t \displaystyle I=\int_0^1 \int_0^{1/y} y\,\{t\}\,dt\,dy =\int_0^1 \int_0^1 y\,\{t\}\,dt\,dy+\int_1^{\infty} \int_0^{1/t} y\,\{t\}\,dy\,dt

I = I 1 + I 2 \displaystyle \Rightarrow I=I_1+I_2

I 1 I_1 is easy to evaluate and is equal to 1 4 \dfrac{1}{4} .

I 2 = 1 2 1 { t } t 2 d t = lim n 1 2 k = 1 n k k + 1 t k t 2 d t = lim n 1 2 k = 1 n ( ln ( 1 + 1 k ) 1 k + 1 ) = lim n 1 2 ( ln ( n + 1 ) H n + 1 + 1 ) = 1 γ 2 \displaystyle \begin{aligned} I_2=\frac{1}{2}\int_1^{\infty} \frac{\{t\}}{t^2}\,dt & =\lim_{n\rightarrow \infty} \frac{1}{2}\sum_{k=1}^n \int_k^{k+1} \frac{t-k}{t^2}\,dt \\ &= \lim_{n\rightarrow \infty} \frac{1}{2}\sum_{k=1}^n\left(\ln\left(1+\frac{1}{k}\right)-\frac{1}{k+1}\right) \\ &=\lim_{n\rightarrow \infty} \frac{1}{2}\left(\ln(n+1)-H_{n+1}+1\right) \\ &=\frac{1-\gamma}{2} \\ \end{aligned}

Hence,

I = 1 4 + 1 γ 2 = 3 4 γ 2 \displaystyle I=\frac{1}{4}+\frac{1-\gamma}{2}=\boxed{\dfrac{3}{4}-\dfrac{\gamma}{2}}


Could you please explain the first step of your solution Pranav?

I did it in a little differently:

0 1 ( 0 y x y d x + y 2 y x y 1 d x + 2 y 3 y x y 2 d x + . . . + ( n 1 ) y n y x y ( n 1 ) d x + n y 1 x y n d x ) d y \displaystyle\int_{0}^{1}\bigg( \displaystyle\int_{0}^{y} \frac{x}{y}\text{ }\text{d}x+\displaystyle\int_{y}^{2y} \frac{x}{y}-1\text{ }\text{d}x+\displaystyle\int_{2y}^{3y} \frac{x}{y}-2\text{ }\text{d}x+...+\displaystyle\int_{(\left \lfloor{n}\right \rfloor -1)y}^{\left \lfloor{n}\right \rfloor y} \frac{x}{y}-(\left \lfloor{n}\right \rfloor -1)\text{ }\text{d}x+\displaystyle\int_{\left \lfloor{n}\right \rfloor y}^{1} \frac{x}{y}-\left \lfloor{n}\right \rfloor\text{ }\text{d}x\bigg)\text{d}y

where n y = 1 ny=1

Integrating w.r.t. x x we obtain:

0 1 n ( n + 1 ) y 2 + 1 2 y n d y \displaystyle\int_{0}^{1} \frac{\left \lfloor{n}\right \rfloor(\left \lfloor{n}\right \rfloor +1)y}{2}+\dfrac{1}{2y}-\left \lfloor{n}\right \rfloor\text{ }\text{d}y

Now putting n = 1 y n=\dfrac{1}{y} and y = 1 t y=\dfrac{1}{t} we obtain:

1 ( t ) 2 + t 2 t 3 + 1 2 t t t 2 d t \displaystyle\int_{1}^{\infty} \frac{(\left \lfloor{t}\right \rfloor)^{2}+\left \lfloor{t}\right \rfloor}{2t^{3}}+\dfrac{1}{2t}-\frac{\left \lfloor{t}\right \rfloor}{t^{2}}\text{ }\text{d}t

= r = 1 r r + 1 r 2 + r 2 t 3 + 1 2 t r t 2 d t =\displaystyle\sum_{r=1}^{\infty}\!\!\displaystyle\int_{r}^{r+1} \frac{r^{2}+r}{2t^{3}}+\frac{1}{2t}-\frac{r}{t^{2}}\text{ }\text{d}t

= 1 4 + 1 2 r = 1 ln ( r + 1 r ) 1 r + 1 =\dfrac{1}{4}+\dfrac{1}{2}\displaystyle\sum_{r=1}^{\infty} \ln \left( \dfrac{r+1}{r}\right)-\dfrac{1}{r+1}

= 1 4 + 1 2 ( 1 γ ) =\dfrac{1}{4}+\dfrac{1}{2}(1-\gamma)

However I didn't know about this number γ \gamma and had to evaluate the final limit on W|A.

Karthik Kannan - 6 years, 11 months ago

Log in to reply

Your solution is nice too. :)

Are you asking about the step when I split the integral into two? If so, try graphing the region I am integrating on.

Pranav Arora - 6 years, 11 months ago

Log in to reply

Yes I understand now. It became crystal clear with the graph. Thanks a lot Pranav!! ¨ \ddot\smile

Karthik Kannan - 6 years, 11 months ago

Log in to reply

@Karthik Kannan Glad to help! :)

Pranav Arora - 6 years, 11 months ago

Wow! This is an amazing solution. I used no substitution and simplified the expression:

1 2 1 2 ( r = 1 ( 1 r + 1 1 / r x ( 1 / x r ( 1 / x r ) 2 ) d x ) ) \displaystyle \dfrac{1}{2} - \dfrac{1}{2}\bigg(\displaystyle \sum_{r=1}^{\infty} \bigg(\int \limits_{\frac{1}{r+1}}^{1/r} x \bigg(1/x-r - (1/x-r)^2\bigg) {\mathrm dx}\bigg)\bigg)

jatin yadav - 6 years, 11 months ago

Log in to reply

Nice! Why not post it as a solution? :)

Pranav Arora - 6 years, 11 months ago

@Pranav Arora Awesome solution, how about this I n = 0 1 0 1 { n x y } d x d y I_n= \int_0^1 \int_0^1 \left\{ \frac{nx}{y} \right\} \ \mathrm{d}x\ \mathrm{d}y Where n n is a positive integer.

Haroun Meghaichi - 6 years, 11 months ago

Log in to reply

Thanks! :)

For the integral, I got: 1 4 + n 2 ( H n ln n γ ) \frac{1}{4}+\frac{n}{2}\left(H_n-\ln n-\gamma\right)

Pranav Arora - 6 years, 11 months ago

Log in to reply

I think that the result should be what you wrote divided of n n . Check if you haven't made any factoring errors.

Haroun Meghaichi - 6 years, 11 months ago

Log in to reply

@Haroun Meghaichi Yes, you are right. I forgot a factor of 1 / n 1/n .

Pranav Arora - 6 years, 11 months ago

If x/y=t then dx=ydt + tdy. How u use that in integration???

Kushal Bose - 4 years, 7 months ago
Haroun Meghaichi
Jul 16, 2014

Note that : 0 1 { x y } d x d y = y 0 y 1 { z } d z = y 2 ( 1 y + ( 1 y 1 y ) 2 ) \int_0^1 \left\{\frac{x}{y} \right\} \ \mathrm{d}x\mathrm{d}y =y\int_0^{y^{-1}} \{z\} \ \mathrm{d}z =\frac{y}{2}\left(\left\lfloor \frac{1}{y} \right\rfloor+ \left(\frac{1}{y} - \left\lfloor \frac{1}{y}\right\rfloor \right)^2\right) Make the change y = t 1 y=t^{-1} to get : 2 I = 1 t + t 2 + t 2 2 t t t 3 d t 2I= \int_1^{\infty} \frac{\lfloor t \rfloor + \lfloor t\rfloor^2 +t^2 -2t \lfloor t\rfloor }{t^3} \ \mathrm{d}t Note that the integrand is + 2 t 2 \overset{+\infty}{\sim} 2t^{-2} and boundedly piece-wise continuous, then integral is convergent this means that : 2 I = lim n 1 n t + t 2 + t 2 2 t t t 3 d t = lim n k = 1 n 1 k k + 1 k + k 2 + t 2 2 k t t 3 d t 2I= \lim_{n} \int_1^n \frac{\lfloor t\rfloor +\lfloor t\rfloor^2 +t^2-2t \lfloor t\rfloor }{t^3 } \ \mathrm{d}t = \lim_n \sum_{k=1}^{n-1} \int_k^{k+1} \frac{k+k^2+t^2-2kt}{t^3} \ \mathrm{d}t Integrate to get : 2 I = lim n k = 1 n 1 2 k 3 2 ( k + 1 ) + ln ( k + 1 ) ln k 2I= \lim_n \sum_{k=1}^{n} \frac{1}{2k} -\frac{3}{2(k+1)} +\ln(k+1)-\ln k 2 I = lim n 3 n 2 ( n + 1 ) + ln ( n + 1 ) H n = 3 2 γ 2I= \lim_n \frac{3n}{2(n+1)} +\ln(n+1)-H_n = \frac{3}{2}- \gamma Which gives : I = 3 2 γ 4 . I= \frac{3-2\gamma}{4} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...