Let : I = ∫ 0 1 ∫ 0 1 { y x } d x d y Find ⌊ 1 0 0 0 I ⌋ .
{ x } denotes to the fractional part of x , and ⌊ x ⌋ denotes to the floor function for x .
Remark : Numerical integration using software can be wrong.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Could you please explain the first step of your solution Pranav?
I did it in a little differently:
∫ 0 1 ( ∫ 0 y y x d x + ∫ y 2 y y x − 1 d x + ∫ 2 y 3 y y x − 2 d x + . . . + ∫ ( ⌊ n ⌋ − 1 ) y ⌊ n ⌋ y y x − ( ⌊ n ⌋ − 1 ) d x + ∫ ⌊ n ⌋ y 1 y x − ⌊ n ⌋ d x ) d y
where n y = 1
Integrating w.r.t. x we obtain:
∫ 0 1 2 ⌊ n ⌋ ( ⌊ n ⌋ + 1 ) y + 2 y 1 − ⌊ n ⌋ d y
Now putting n = y 1 and y = t 1 we obtain:
∫ 1 ∞ 2 t 3 ( ⌊ t ⌋ ) 2 + ⌊ t ⌋ + 2 t 1 − t 2 ⌊ t ⌋ d t
= r = 1 ∑ ∞ ∫ r r + 1 2 t 3 r 2 + r + 2 t 1 − t 2 r d t
= 4 1 + 2 1 r = 1 ∑ ∞ ln ( r r + 1 ) − r + 1 1
= 4 1 + 2 1 ( 1 − γ )
However I didn't know about this number γ and had to evaluate the final limit on W|A.
Log in to reply
Your solution is nice too. :)
Are you asking about the step when I split the integral into two? If so, try graphing the region I am integrating on.
Log in to reply
Yes I understand now. It became crystal clear with the graph. Thanks a lot Pranav!! ⌣ ¨
Wow! This is an amazing solution. I used no substitution and simplified the expression:
2 1 − 2 1 ( r = 1 ∑ ∞ ( r + 1 1 ∫ 1 / r x ( 1 / x − r − ( 1 / x − r ) 2 ) d x ) )
@Pranav Arora Awesome solution, how about this I n = ∫ 0 1 ∫ 0 1 { y n x } d x d y Where n is a positive integer.
Log in to reply
Thanks! :)
For the integral, I got: 4 1 + 2 n ( H n − ln n − γ )
Log in to reply
I think that the result should be what you wrote divided of n . Check if you haven't made any factoring errors.
Log in to reply
@Haroun Meghaichi – Yes, you are right. I forgot a factor of 1 / n .
If x/y=t then dx=ydt + tdy. How u use that in integration???
Note that : ∫ 0 1 { y x } d x d y = y ∫ 0 y − 1 { z } d z = 2 y ( ⌊ y 1 ⌋ + ( y 1 − ⌊ y 1 ⌋ ) 2 ) Make the change y = t − 1 to get : 2 I = ∫ 1 ∞ t 3 ⌊ t ⌋ + ⌊ t ⌋ 2 + t 2 − 2 t ⌊ t ⌋ d t Note that the integrand is ∼ + ∞ 2 t − 2 and boundedly piece-wise continuous, then integral is convergent this means that : 2 I = n lim ∫ 1 n t 3 ⌊ t ⌋ + ⌊ t ⌋ 2 + t 2 − 2 t ⌊ t ⌋ d t = n lim k = 1 ∑ n − 1 ∫ k k + 1 t 3 k + k 2 + t 2 − 2 k t d t Integrate to get : 2 I = n lim k = 1 ∑ n 2 k 1 − 2 ( k + 1 ) 3 + ln ( k + 1 ) − ln k 2 I = n lim 2 ( n + 1 ) 3 n + ln ( n + 1 ) − H n = 2 3 − γ Which gives : I = 4 3 − 2 γ .
Problem Loading...
Note Loading...
Set Loading...
For the integral with respect to x , use the substitution y x = t .
I = ∫ 0 1 ∫ 0 1 / y y { t } d t d y = ∫ 0 1 ∫ 0 1 y { t } d t d y + ∫ 1 ∞ ∫ 0 1 / t y { t } d y d t
⇒ I = I 1 + I 2
I 1 is easy to evaluate and is equal to 4 1 .
I 2 = 2 1 ∫ 1 ∞ t 2 { t } d t = n → ∞ lim 2 1 k = 1 ∑ n ∫ k k + 1 t 2 t − k d t = n → ∞ lim 2 1 k = 1 ∑ n ( ln ( 1 + k 1 ) − k + 1 1 ) = n → ∞ lim 2 1 ( ln ( n + 1 ) − H n + 1 + 1 ) = 2 1 − γ
Hence,
I = 4 1 + 2 1 − γ = 4 3 − 2 γ
H n + 1 is n + 1 t h harmonic number .
γ is the Euler-Mascheroni Constant .