A single root

Algebra Level 4

The equation x 2 + 2 ( x + 2 ) = 0 x^2 +2(x+2) = 0 has a root p p .

Find the value of 3 p 5 + 6 p 4 + 3 p 3 3p^5 + 6p^4 + 3p^3 .


The answer is -72.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Akshay Yadav
Jun 18, 2016

We are given p p is a root of x 2 + 2 x + 4 = 0 x^2+2x+4=0 which implies that p 2 + 2 p + 4 = 0 p^2+2p+4=0 ,

We need 3 p 5 + 6 p 4 + 3 p 3 3p^5+6p^4+3p^3 , dividing it by p 2 + 2 p + 4 p^2+2p+4 we get,

3 p 5 + 6 p 4 + 3 p 3 = ( 3 p 3 9 p ) ( p 2 + 2 p + 4 ) + 18 p 2 + 36 p 3p^5+6p^4+3p^3=(3p^3-9p)(p^2+2p+4)+18p^2+36p

3 p 5 + 6 p 4 + 3 p 3 = 0 + 18 p ( p + 2 ) 3p^5+6p^4+3p^3=0+18p(p+2)

3 p 5 + 6 p 4 + 3 p 3 = 72 3p^5+6p^4+3p^3=-72

@Akshay Yadav , we really liked your comment, and have converted it into a solution. If you subscribe to this solution, you will receive notifications about future comments.

Brilliant Mathematics Staff - 4 years, 12 months ago
Rishabh Jain
Jun 18, 2016

The roots are 2 e ± i 2 π 3 = 1 ± 3 i 2e^{\pm\frac{i2\pi}3}=-1\pm \sqrt 3i by completing the squares (**) . The required expression is:-

3 p 3 ( p + 1 ) 2 = 3 ( 2 e ± 2 π i 3 ) 3 ( 1 ± 3 i + 1 ) 2 = 3 × 8 e ± 2 π i ( 3 ) = 72 \begin{aligned}3\color{#20A900}{p}^3(\color{#D61F06}{p}+1)^2=& 3\left(\color{#20A900}{2e^{\pm\frac{2\pi i}3}}\right)^3(\color{#D61F06}{\cancel{-1}\pm\sqrt 3i}+\cancel{1})^2\\=&3\times 8 e^{\pm2\pi i}(-3)=\boxed{-72}\end{aligned}

( ) ( x + 1 ) 2 = 3 x = 1 ± 3 i = 2 e ± 2 π i 3 (**)\\(x+1)^2=-3\\\implies x=-1\pm \sqrt 3i=2e^{\pm\frac{2\pi i}{3}}~~~~~~

Rishabh Jain - 4 years, 12 months ago

Log in to reply

How to get 2 e ± 2 i π 3 2e^{\pm\frac{2i\pi}{3}} ?

Anik Mandal - 4 years, 11 months ago

Log in to reply

1 ± 3 i = 2 ( 1 / 2 ± 3 / 2 i ) = 2 ( cos ± 2 i π 3 + i sin ± 2 i π 3 ) = e ± 2 i π 3 -1\pm \sqrt 3i=2\left(-1/2\pm\sqrt 3/2i\right)=2(\cos \pm\frac{2i\pi}{3}+i\sin \pm\frac{2i\pi}{3})=e^{\pm\frac{2i\pi}{3}}

Rishabh Jain - 4 years, 11 months ago

Log in to reply

@Rishabh Jain Oh yeah!! I forgot it..thanks

Anik Mandal - 4 years, 11 months ago
Aditya Sky
Jun 18, 2016

We have :- x 2 + 2 x + 4 = 0 x 2 = 2 x 4 x 3 = 2 x 2 4 x x 3 = 2 ( 2 x 4 ) 4 x x 3 = 8 x^{2}+2x+4=0\,\implies \, \color{#D61F06}{x^{2}=-2x-4}\,\implies \,x^{3}=-2x^{2}-4x\,\implies\,x^{3}=-2\left(\color{#D61F06}{-2x-4} \right)-4x\,\implies \, \color{#3D99F6}{x^{3}=8} .

Now, x 2 + 2 x + 4 = 0 x 2 + 2 x + 1 = 3 x 3 ( x 2 + 2 x + 1 ) = x 3 3 x 5 + 2 x 4 + x 3 = 24 3 x 5 + 6 x 4 + 3 x 3 = 3 ( 24 ) = 72 x^{2}+2x+4=0\, \implies \, x^{2}+2x+1=-3\,\implies\,x^{3} \cdot (x^{2}+2x+1)= \color{#3D99F6}{x^{3}} \cdot -3\,\implies \, x^{5}+2x^{4}+x^{3}=-24\,\implies \,3x^{5}+6x^{4}+3x^{3}=3(-24)=-72 .

If p p is a root to the given quadratic equation, then 3 p 5 + 6 p 4 + 3 p 3 = 72 \boxed{\color{#EC7300}{3p^{5}+6p^{4}+3p^{3}}}=-72 .

Infact, we can generalize the given expression for non - negative integral exponents as :- 3 p 3 n + 2 + 6 p 3 n + 1 + 3 p 3 n = 9 8 n \huge \boxed{\color{#3D99F6}{3 \cdot p^{3n+2}+6 \cdot p^{3n+1} +3 \cdot p^{3n}\,=\,-9\cdot8^{n}}} .

If the above generalization is correct,
I f X 2 + 2 X + 4 = 0 X 3 n ( X + 1 ) 2 = 3 2 3 n \huge \color{#20A900}{If \ X^2+2X+4=0}\\ \huge \color{#D61F06}{X^{3n}*\left (X+1 \right )^2 = - 3*2^{3n}}
Anything more possible ?

Niranjan Khanderia - 4 years, 11 months ago
Chew-Seong Cheong
Jun 19, 2016

Since p p is a root of x 2 + 2 ( x + 2 ) = 0 x^2+2(x+2)=0 , then p 2 + 2 ( p + 2 ) = 0 p^2 + 2(p+2)=0 .

p 2 + 2 ( p + 2 ) = 0 p 2 + 2 p + 4 = 0 p 2 = 2 p 4 p 3 = 2 p 2 4 p = 2 ( 2 p 4 ) 4 p = 4 p + 8 4 p = 8 p 4 = 8 p p 5 = 8 p 2 = 16 p 32 \begin{aligned} p^2 + 2(p+2) & = 0 \\ p^2 + 2p+4 & = 0 \\ \implies p^2 & = -2p-4 \\ p^3 & = -2p^2 - 4p = -2(-2p-4) - 4p = 4p+8 -4p = 8 \\ p^4 & = 8p \\ p^5 & = 8p^2 = - 16p - 32 \end{aligned}

3 p 5 + 6 p 4 + 3 p 3 = 3 ( 16 p 32 ) + 6 ( 8 p ) + 3 ( 8 ) = 48 p 96 + 48 p + 24 = 72 \begin{aligned} \implies 3p^5 + 6p^4 + 3p^3 & = 3( - 16p - 32) + 6(8p) + 3(8) \\ & = -48p -96 + 48p + 24 \\ & = \boxed{-72} \end{aligned}

Akash Shukla
Jun 19, 2016

As , p 2 + 2 p + 4 = 0....... ( 1 ) p^2+2p+4 = 0 .......(1)

p 2 + 2 p + 1 = 3 p^2+2p+1 = -3

( p + 1 ) 2 = 3 (p+1)^2 = -3

p = ± 3 i 1 = 2 e ± 2 π 3 p = ±\sqrt{3}i-1 = 2e^{±\dfrac{2\pi}{3}}

Multyplying eqn (1) by 3 p 3 3p^3 ,

3 p 5 + 6 p 4 + 12 p 3 = 0 3p^5+6p^4+12p^3 = 0

3 p 5 + 6 p 4 + 3 p 3 = 9 p 3 = 9 ( 8 e ± 2 π i ) = 9 ( 8 ) = 72 3p^5+6p^4+3p^3=-9p^3 = -9(8e^{±2\pi i}) = -9(8) = \boxed{-72}

4th line, p = ± 3 i 1 , p=\pm \sqrt3 i - 1, a typo.

Niranjan Khanderia - 4 years, 11 months ago

Thanks,edited. @Niranjan Khanderia

Akash Shukla - 4 years, 11 months ago
Hung Woei Neoh
Jun 19, 2016

Method 1

Given that p p is a root of the equation, we know that

p 2 + 2 ( p + 2 ) = 0 p 2 + 2 p + 4 = 0 p^2 + 2(p+2) = 0\\ p^2 + 2p + 4 = 0

3 p 5 + 6 p 4 + 3 p 3 = 3 p 3 ( p 2 + 2 p + 1 ) = 3 p 3 ( p 2 + 2 p + 4 3 ) = 9 p 3 = 9 p ( p 2 ) 3p^5 + 6p^4 + 3p^3\\ =3p^3(p^2+2p+1)\\ =3p^3(\color{#3D99F6}{p^2+2p+4}-3)\\ =-9p^3\\ =-9p(p^2)

From the equation, we know that p 2 = 2 p 4 p^2 = -2p -4 . Substitute this in:

9 p ( p 2 ) = 9 p ( 2 p 4 ) = 18 p 2 + 36 p = 18 ( p 2 + 2 p ) = 18 ( p 2 + 2 p + 4 4 ) = 18 ( 4 ) = 72 -9p(p^2)\\ =-9p(-2p-4)\\ =18p^2+36p\\ =18(p^2+2p)\\ =18(\color{#3D99F6}{p^2+2p+4}-4)\\ =18(-4)\\ =\boxed{-72}


Method 2

Find the value of p p :

p = 2 ± 2 2 4 ( 1 ) ( 4 ) 2 ( 1 ) = 2 ± 12 2 = 1 ± 3 = 1 ± 3 i p=\dfrac{-2 \pm \sqrt{2^2 - 4(1)(4)}}{2(1)}\\ =\dfrac{-2 \pm \sqrt{-12}}{2}\\ =-1 \pm \sqrt{-3}\\ =-1 \pm \sqrt{3}i

Substitute any one of these roots in (you can try this with 1 3 i -1 -\sqrt{3}i , your answer will still be the same):

3 p 5 + 6 p 4 + 3 p 3 = 3 p 3 ( p 2 + 2 p + 1 ) = 3 ( 1 + 3 i ) 3 ( ( 1 + 3 i ) 2 + 2 ( 1 + 3 i ) + 1 ) = 3 ( 1 + 3 3 i + 9 3 3 i ) ( 1 2 3 i 3 2 + 2 3 i + 1 ) = 3 ( 8 ) ( 3 ) = 72 3p^5 + 6p^4 + 3p^3\\ =3p^3(p^2+2p+1)\\ =3(-1 + \sqrt{3}i)^3\left((-1+\sqrt{3}i)^2 + 2(-1 + \sqrt{3}i) + 1\right)\\ =3(-1 +3\sqrt{3}i +9 -3\sqrt{3}i)(1 - 2\sqrt{3}i - 3 - 2 + 2\sqrt{3} i + 1)\\ =3(8)(-3)\\ =\boxed{-72}

S i n c e p i s a r o o t o f x 2 + 2 ( x + 2 ) = 0 , p 2 + 2 ( p + 2 ) = 0. p 2 = ( 2 p 4 ) , o r p 2 + 2 p = 4 3 p 5 + 6 p 4 + 3 p 3 = 3 ( p 2 ) p ( p 2 + 2 p + 4 3 ) = 3 ( 2 p 4 ) p ( 0 3 ) = 3 ( 2 ) ( p 2 + 2 p ) ( 0 3 ) = 6 ( 4 ) ( 3 ) = 72 . Since \ p\ is\ a\ root\ of\ x^2+2(x+2)=0, \ \ p^2 + 2(p+2)=0.\\ \implies \ \color{#3D99F6}{p^2=( - 2p-4),\ \ or\ \ p^2+2p= - 4}\\ 3p^5+6p^4+3p^3 \\ =3*(p^2)*p*(\color{#3D99F6}{p^2+2p+4}-3)\\ =3*(\color{#3D99F6}{-2p-4})*p*(0-3)\\ = 3*(\color{#3D99F6}{ - 2)*(p^2+2p})*(0-3)\\ = -6*(-4)*(-3)\\ = \ \ \ \ \ \ \ \ \Large \ \ \ \color{#D61F06}{-72}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...