A tribute (Might Draw Blood)

k = 1 ( n = 1 k n k n = 1 k n k ) = x \large \displaystyle \sum_{k=1}^{\infty}\left({\frac{\displaystyle \sum_{n=1}^{k}nk}{\displaystyle\prod_{n=1}^{k}nk}}\right) = \ x

Find the value of x \large x correct to five decimal places


The answer is 1.86783.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sumukh Bansal
Nov 9, 2017

Given \large\text{Given} k = 1 ( n = 1 k n k n = 1 k n k ) = x \large \displaystyle \sum_{k=1}^{\infty}\left({\frac{\displaystyle \sum_{n=1}^{k}nk}{\displaystyle\prod_{n=1}^{k}nk}}\right) = \ x First we find \large\text{First we find} n = 1 k n k n = 1 k n k \large {\frac{\displaystyle \sum_{n=1}^{k}nk}{\displaystyle\prod_{n=1}^{k}nk}} n = 1 k n k = k + 2 k + 3 k . . . . . . k k \large {\displaystyle \sum_{n=1}^{k}nk} = k+2k+3k......kk k ( 1 + 2 + 3..... k ) \Rightarrow k(1+2+3.....k) ( k ) k ( k + 1 ) 2 \Rightarrow (k)\dfrac{k(k+1)}{2} ( k ) k 2 + k 2 \Rightarrow (k)\dfrac{k^2+k}{2} k 3 + k 2 2 \Rightarrow \dfrac{k^3+k^2}{2} Now we find \large\text{Now we find} n = 1 k n k = k × 2 k × 3 k . . . . . . k k \large{\displaystyle\prod_{n=1}^{k}nk}=k\times2k\times3k......kk ( 1 × 2 × 3...... k ) × ( k × k . . . . . k t i m e s ) \Rightarrow(1\times2\times3......k)\times(k\times k.....k times) ( k ! ) × ( k k ) \Rightarrow (k!)\times(k^k) We can write it as \large\text{We can write it as} n = 1 k n k n = 1 k n k = ( k 3 + k 2 ) ( 1 ÷ 2 ) ( k ! ) × ( k k ) \large {\frac{\displaystyle \sum_{n=1}^{k}nk}{\displaystyle\prod_{n=1}^{k}nk}}=\dfrac{(k^3+k^2)(1\div2)}{(k!)\times(k^k)} ( k 3 + k 2 ) 2 ( k ! × k k ) \Rightarrow \dfrac{(k^3+k^2)}{2(k!\times k^k)} k ( k 2 + k ) 2 k [ ( k 1 ) ! × k k 1 ] \Rightarrow \dfrac{k(k^2+k)}{2k[(k-1)!\times k^{k-1}]} k 2 + k 2 [ ( k 1 ) ! × k k 1 ] \Rightarrow \dfrac{k^2+k}{2[(k-1)!\times k^{k-1}]} k 2 ( k + 1 ) ( k 1 ) ! × k k 1 \Rightarrow \dfrac{\dfrac{k}{2}(k+1)}{(k-1)!\times k^{k-1}} Now we will equate the equation \large\text{Now we will equate the equation} k = 1 ( n = 1 k n k n = 1 k n k ) = k = 1 k 2 ( k + 1 ) ( k 1 ) ! × k k 1 \large\displaystyle \sum_{k=1}^{\infty}({\frac{\displaystyle \sum_{n=1}^{k}nk}{\displaystyle\prod_{n=1}^{k}nk}}) = \displaystyle \sum_{k=1}^{\infty}\dfrac{\dfrac{k}{2}(k+1)}{(k-1)!\times k^{k-1}} But this is not a geometric progession as the first term is less than the second term and the third term is less than the second term. \large\text{But this is not a geometric progession as the first term is less than the second term and the third term is less than the second term. } However,This can be rewritten as \large\text{However,This can be rewritten as} k = 3 k 2 ( k + 1 ) ( k 1 ) ! × k k 1 + a + b \displaystyle \sum_{k=3}^{\infty}\dfrac{\dfrac{k}{2}(k+1)}{(k-1)!\times k^{k-1}}+a+b where a is the first term and b is the second term and the expression will be a geometric progession. \large\text{where a is the first term and b is the second term and the expression will be a geometric progession.} k = 3 k 2 ( k + 1 ) ( k 1 ) ! × k k 1 = a 1 1 a 2 a 1 \large\displaystyle \sum_{k=3}^{\infty}\dfrac{\dfrac{k}{2}(k+1)}{(k-1)!\times k^{k-1}}=\dfrac{a_1}{1-\dfrac{a_2}{a_1}} 1 3 1 5 192 1 3 \Rightarrow \dfrac{\dfrac 13}{1 - \dfrac{\dfrac5{192}}{\dfrac13}} 1 3 1 ( 5 192 × 3 ) \Rightarrow \dfrac{\dfrac{1}{3}}{1-(\dfrac{5}{192}\times3)} 1 3 × 64 59 \Rightarrow \dfrac{1}{3}\times\dfrac{64}{59} 64 177 \Rightarrow \dfrac{64}{177} 0.36158 \Rightarrow 0.36158 a = 1 \large a=1 b = 3 2 \large b=\dfrac32 Adding all the expressions \large\text{Adding all the expressions} k = 3 k 2 ( k + 1 ) ( k 1 ) ! × k k 1 + a + b = 0.36158 + 1 + 1.5 \displaystyle \sum_{k=3}^{\infty}\dfrac{\dfrac{k}{2}(k+1)}{(k-1)!\times k^{k-1}}+a+b=0.36158+1+1.5 2.86158 \Rightarrow 2.86158 So \text{So} x = 2.86158 \large x=2.86158 Hence \text{Hence} k = 1 ( n = 1 k n k n = 1 k n k ) = 2.86158 \large \displaystyle \sum_{k=1}^{\infty}\left({\frac{\displaystyle \sum_{n=1}^{k}nk}{\displaystyle\prod_{n=1}^{k}nk}}\right) = \ 2.86158 This is a awesome problem and solution so please don’t feel ashamed to upvote and like it \text{This is a awesome problem and solution so please don't feel ashamed to upvote and like it}

Good. But I think there is a wrong.

n = 1 k n k n = 1 k n k = ( k 3 + k 2 ) ( 1 ÷ 2 ) ( k ! ) × ( k k ) = ( k 3 + k 2 ) 2 ( k ! × k k ) = k ( k 2 + k ) 2 k [ ( k 1 ) ! × k k 1 ] \large {\frac{\displaystyle \sum_{n=1}^{k}nk}{\displaystyle\prod_{n=1}^{k}nk}}=\dfrac{(k^3+k^2)(1\div2)}{(k!)\times(k^k)} =\dfrac{(k^3+k^2)}{2(k!\times k^k)}=\dfrac{k(k^2+k)}{\cancel{2k[(k-1)!\times k^{k-1}]}}

In this line you write, 2 × k ! × k k = k [ 2 × k ! × k k 1 ] 2\times k!\times k^k=k[2\times k!\times k^{k-1}] . It's wrong.

Because here 2 , k ! , k k 2,k!,k^k are in multiplication. So it can rewrite 2 × k ! × k k = 2 × k × ( k 1 ) ! × k k 2\times k!\times k^k=2\times k\times(k-1)!\times k^k

Then you can able to go forward...

Md Mehedi Hasan - 3 years, 7 months ago

Log in to reply

What is the difference between two?

Sumukh Bansal - 3 years, 7 months ago

Log in to reply

You pulled a k out of both k! and k^k; you can either have (k-1)! or k^(k-1) but not both

Stephen Brown - 3 years, 7 months ago

Log in to reply

@Stephen Brown Thanks i see it now i will delete this problem and post a similar one soon

Sumukh Bansal - 3 years, 7 months ago

Log in to reply

@Sumukh Bansal You can request for help to brilliant to update the answer

Md Mehedi Hasan - 3 years, 7 months ago

Log in to reply

@Md Mehedi Hasan Thanks.But i dont know how to do so.

Sumukh Bansal - 3 years, 7 months ago

Log in to reply

@Sumukh Bansal The interesting point is that the answer was wrong but still got that

Sumukh Bansal - 3 years, 7 months ago

@Sumukh Bansal You say them to change your ans in report section of this post.

The correct ans is 1.86783 1.86783 . And say them to update the ans to 1.86783 1.86783

Afterthat, you'll change your solution.

Md Mehedi Hasan - 3 years, 7 months ago

Log in to reply

@Md Mehedi Hasan I have done so

Sumukh Bansal - 3 years, 7 months ago

@Md Mehedi Hasan THANKS \huge\text{THANKS}

Sumukh Bansal - 3 years, 7 months ago

@Sumukh Bansal Mention as BRILLIANT STAF, and say them, they'll update your answer in few days...

Md Mehedi Hasan - 3 years, 7 months ago

Have you got it?

Md Mehedi Hasan - 3 years, 7 months ago
Miles Koumouris
Nov 21, 2017

Expand and simplify to obtain

k = 1 ( n = 1 k n k n = 1 k n k ) = m = 1 m + 1 2 m m 2 m ! . \sum_{k=1}^{\infty}\left({\frac{\displaystyle \sum_{n=1}^{k}nk}{\displaystyle\prod_{n=1}^{k}nk}}\right)=\sum_{m=1}^{\infty }\dfrac{m+1}{2m^{m-2}m! }.

It is easy to verify that this sum converges using the ratio test. Then evaluating the sum (using a calculator, or by summing the first few terms since it converges quickly) yields an answer of 1.86783 \boxed{1.86783} rounded to 5 5 decimal places.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...