A Unique Set of Cevians (almost)

Geometry Level 3

As shown in the figure, A B C \triangle {ABC} has side lengths 13 13 , 14 14 and 15 15 , and A D = B F = C E AD = BF = CE . Find 10000 A Y \lfloor 10000 \cdot AY\rfloor .


The answer is 73379.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let A D = D B = C E = x AD=DB=CE=x . By generalized angle bisector theorem , we have:

B D A D = B C sin B C D C A sin A C D 14 x x = 15 sin B C D 13 sin A C D sin B C D sin A C D = 13 ( 14 x ) 15 x \begin{aligned} \frac {BD}{AD} & = \frac {BC \cdot \sin \angle BCD}{CA \cdot \sin \angle ACD} \\ \frac {14-x}x & = \frac {15 \sin \angle BCD}{13 \sin \angle ACD} \\ \implies \frac {\sin \angle BCD}{\sin \angle ACD} & = \frac {13(14-x)}{15x} \end{aligned}

Similarly,

Y F A F = C F sin B C D C A sin A C D A F A Y A Y = ( 15 x ) 13 ( 14 x ) 13 15 x A F A Y 1 = ( 14 x ) ( 15 x ) 15 x A Y = 15 x A F ( 14 x ) ( 15 x ) + 15 x \begin{aligned} \frac {YF}{AF} & = \frac {CF \cdot \blue{\sin \angle BCD}}{CA \cdot \blue{\sin \angle ACD}} \\ \frac {AF-AY}{AY} & = \frac {(15-x)\cdot \blue{13(14-x)}}{13\cdot \blue{15x}} \\ \frac {AF}{AY} - 1 & = \frac {(14-x)(15-x)}{15x} \\ \implies AY & = \frac {15x \cdot AF}{(14-x)(15-x)+15x} \end{aligned}

We need to find A F AF and x x to find A Y AY . To find A F AF , we need to first find x x and we can use Ceva's theorem as follows.

C E E A A D D B B F F C = 1 x 13 x x 14 x x 15 x = 1 x 3 ( 13 x ) ( 14 x ) ( 15 x ) = 0 x 6.976109308 \begin{aligned} \frac {CE}{EA} \cdot \frac {AD}{DB} \cdot \frac {BF}{FC} & = 1 \\ \frac x{13-x} \cdot \frac x{14-x} \cdot \frac x{15-x} & = 1 \\ x^3 - (13-x)(14-x)(15-x) & = 0 \\ \implies x & \approx 6.976109308 \end{aligned}

To find A F AF , we use cosine rule . First 1 4 2 = 1 3 2 + 1 5 2 2 ( 13 ) ( 15 ) cos C cos C = 1 3 2 + 1 5 2 1 4 2 2 ( 13 ) ( 15 ) = 33 65 14^2=13^2+15^2 - 2(13)(15)\cos C \implies \cos C = \dfrac {13^2+15^2-14^2}{2(13)(15)} = \dfrac {33}{65} and

A F 2 = 1 3 2 + ( 15 x ) 2 2 ( 13 ) ( 15 x ) cos C 127.4674647 A F 11.29014901 \begin{aligned} AF^2 & = 13^2 + (15-x)^2 - 2(13)(15-x)\cos C \approx 127.4674647 \\ \implies AF & \approx 11.29014901 \end{aligned}

Therefore, A Y = 15 x A F ( 14 x ) ( 15 x ) + 15 x 7.337984571 10000 A Y = 73379 AY = \dfrac {15x \cdot AF}{(14-x)(15-x)+15x} \approx 7.337984571 \implies \lfloor 10000\cdot AY\rfloor = \boxed{73379} .

Thank you for your solution. It's quite clear. I would like to improve my math typesetting skills. Is there a way for me to look at your (or anyone else's) LaTeX code?

Fletcher Mattox - 8 months, 1 week ago

Log in to reply

Hope that the following help.

Chew-Seong Cheong - 8 months, 1 week ago

Log in to reply

yes, that's useful, but. I guess this means there is no general mechanism provided by Brilliant?

Fletcher Mattox - 8 months, 1 week ago

Just summon me (by tagging me). Like Chew-Seong, I can edit other people's solution as well.

Pi Han Goh - 8 months, 1 week ago

Not to be too persistent, but I ask because someone was apparently able to see my LaTeX here

Fletcher Mattox - 8 months, 1 week ago

Log in to reply

I don't understand your question. Care to rephrase this?

Pi Han Goh - 8 months, 1 week ago

Log in to reply

In the solution section of the link I provided, someone (helpfully) corrected by LaTeX by quoting it exactly as I typed it. So I was wondering how that person was able to see my code. Does this make sense?

Fletcher Mattox - 8 months, 1 week ago

Log in to reply

@Fletcher Mattox

Just highlight then paste into a notepad or equivalent, you will get the raw text.

Pi Han Goh - 8 months, 1 week ago

Fletcher, some of us are moderators including Pi Han Goh and I. We can edit the problems and solutions of others.

Chew-Seong Cheong - 8 months, 1 week ago

Log in to reply

Aha. Thank you!

Fletcher Mattox - 8 months, 1 week ago

Log in to reply

@Fletcher Mattox In fact I touched up the figure of this problem. I find that the blue lines for equal lengths were too long. I changed it to equal signs which are easier to understand. I cropped the extra space around to figure. Limit the figure to width=400. Shortened to "Find 10000 A Y \lfloor 10000 \red \cdot AY \rfloor " instead of "Find the length of A Y AY . Submit 10000 A Y \lfloor 10000 AY \rfloor . Added \red \cdot to avoid people read it as 10000 × A × Y 10000 \times A \times Y .

Chew-Seong Cheong - 8 months, 1 week ago

You can leave the substitution of x x at the very end. With

A F A Y 1 = ( 14 x ) ( 15 x ) 15 x = 1 15 x x 3 13 x = x 2 15 ( 13 x ) \frac{AF}{AY} - 1 = \dfrac{(14-x)(15-x)}{15x} = \dfrac1{15x} \cdot \dfrac{x^3}{13-x} = \dfrac{x^2}{15(13-x)}

You also wrote A F 2 = 1 3 2 + ( 15 x ) 2 2 ( 13 ) ( 15 x ) cos C = 33 / 65 AF^2 = 13^2 + (15-x)^2 - 2(13)(15-x)\cdot \underbrace{\cos C}_{=33/65} . Simplifying this gives A F = ( 42 5 x ) 2 + ( 56 5 ) 2 AF = \sqrt{ \left( \frac{42}5 - x \right)^2 + \left(\frac{56}5 \right)^2 }

Hence, A Y AY is equal to ( 42 5 x ) 2 + ( 56 5 ) 2 x 2 15 ( 13 x ) + 1 = ( 42 5 x ) 2 + 5 6 2 x 2 3 ( 13 x ) + 5 \dfrac{\sqrt{ \left( \frac{42}5 - x \right)^2 + \left(\frac{56}5 \right)^2 }}{\dfrac{x^2}{15(13-x)} + 1}= \dfrac{\sqrt{(42-5x)^2 + 56^2}} {\dfrac{x^2}{3(13-x)} + 5}

With x 6.976 x\approx 6.976 , you get the answer.

Pi Han Goh - 8 months, 1 week ago
Fletcher Mattox
Oct 2, 2020

The cevians are concurrent at Y, the (first) Yff point for A B C \triangle ABC . They are constructed by marking off a distance x x , counter-clockwise from each vertex, where x x is the solution to the cubic equation ( a x ) ( b x ) ( c x ) = x 3 (a - x)(b - x)(c - x) = x^3 . A second Yff point (named for Peter Yff) can be found by measuring clockwise. x x is then used to compute trilinear coordinates , α : β : γ \alpha:\beta:\gamma for Y Y .

α = 1 a c x b x 3 , β = 1 b a x c x 3 , γ = 1 c b x a x 3 \displaystyle \alpha = \frac{1}{a} \sqrt[3]{\frac{c-x}{b-x}} ,\hspace{1cm} \beta = \frac{1}{b} \sqrt[3]{\frac{a-x}{c-x}},\hspace{1cm} \gamma = \frac{1}{c} \sqrt[3]{\frac{b-x}{a-x}}

Solving the cubic , x 6.977611 x \approx 6.977611

And the trilinears are 0.070169 : 0.080413 : 0.064919 \approx 0.070169 :0.080413: 0.064919

I converted to cartesian coordinates to compute A Y AY , assigning A = ( 0 , 0 ) , B = ( 14 , 0 ) , C = ( 5 , 12 ) A = (0,0), B = (14,0), C = (5,12) which results in Y ( 6.37879 , 3.62727 ) Y \approx (6.37879, 3.62727)

So by Pythagoras, A Y = 6.3787 9 2 + 3.6272 7 2 73379.8 AY = \sqrt{ 6.37879^2 + 3.62727^2} \approx 73379.8 and 10000 A Y = 73379 10000{AY} = \fbox{73379}

More information on the Yff triangle here.

Thank you for teaching me something new today.

Pi Han Goh - 8 months, 1 week ago

Log in to reply

You are welcome. I have learned so much from your posts!

Fletcher Mattox - 8 months, 1 week ago

Nice problem and solution! I believe your question should say AD = BF = CE (it currently says AD = DB = CE).

David Vreken - 7 months, 3 weeks ago

Log in to reply

Oops. Thank you!

Fletcher Mattox - 7 months, 3 weeks ago

Three steps – three theorems: Ceva’s , Stewart’s , Menelaus’s .

Step 1 : to find x = A D = B F = C E x=AD=BF=CE
By Ceva’s theorem on A B C \triangle ABC we have A D D B B F F C C E E A = 1 x 14 x x 15 x x 13 x = 1 x 3 = ( 13 x ) ( 14 x ) ( 15 x ) 2 x 3 42 x 2 + 587 x 2730 = 0 \begin{aligned} \frac{AD}{DB}\cdot \frac{BF}{FC}\cdot \frac{CE}{EA}=1 & \Rightarrow \frac{x}{14-x}\cdot \frac{x}{15-x}\cdot \frac{x}{13-x}=1 \\ & \Rightarrow {{x}^{3}}=\left( 13-x \right)\left( 14-x \right)\left( 15-x \right) \\ & \Rightarrow 2{{x}^{3}}-42{{x}^{2}}+587x-2730=0 \\ \end{aligned} which solves to x = 7 + 63 + 150926511 3 36 3 293 6 ( 63 + 150926511 ) 3 x 6.9761093080953896 x=7+\frac{\sqrt[3]{-63+\sqrt{150926511}}}{\sqrt[3]{36}}-\frac{293}{\sqrt[3]{6\left( -63+\sqrt{150926511} \right)}}\Rightarrow x\approx \text{6}\text{.9761093080953896}

Step 2 : to express A F AF in terms of x x
By Stewart’s theorem on A B C \triangle ABC we have A F 2 = A C 2 B F + A B 2 F C B F + F C B F F C = 13 2 x + 14 2 ( 15 x ) 15 x ( 15 x ) = x 2 84 5 x + 196 \begin{aligned} & A{{F}^{2}}=\frac{A{{C}^{2}}\cdot BF+A{{B}^{2}}\cdot FC}{BF+FC}-BF\cdot FC \\ & =\frac{{{13}^{2}}\cdot x+{{14}^{2}}\cdot \left( 15-x \right)}{15}-x\cdot \left( 15-x \right) \\ & ={{x}^{2}}-\frac{84}{5}x+196 \\ \end{aligned} Thus, A F = x 2 84 5 x + 196 AF=\sqrt{{{x}^{2}}-\frac{84}{5}x+196}

Step 3 : to find A Y AY
By Menelaus’s theorem on A B C \triangle ABC intersected by a line at points Y Y , C C and D D we have A Y Y F F C C B B D D A = 1 A Y Y F = C B F C D A D A A Y Y F = 15 x ( 15 x ) ( 14 x ) A Y Y F = 15 ( 13 x ) x 2 from the equation in step 1 A Y = 15 ( 13 x ) x 2 ( A F A Y ) A Y ( 1 + 15 ( 13 x ) x 2 ) = 15 ( 13 x ) x 2 x 2 84 5 x + 196 A Y = 3 5 ( 13 x ) 5 x 2 84 x + 980 x 2 15 x + 195 \begin{aligned} \frac{AY}{YF}\cdot \frac{FC}{CB}\cdot \frac{BD}{DA}=1 & \Rightarrow \frac{AY}{YF}=\frac{CB}{FC}\cdot \frac{DA}{DA} \\ & \Rightarrow \frac{AY}{YF}=\frac{15x}{\left( 15-x \right)\left( 14-x \right)} \\ & \Rightarrow \frac{AY}{YF}=\frac{15\left( 13-x \right)}{{{x}^{2}}}\ \ \ \ \ \text{ from the equation in step 1} \\ & \Rightarrow AY=\frac{15\left( 13-x \right)}{{{x}^{2}}}\left( AF-AY \right) \\ & \Rightarrow AY\cdot \left( 1+\frac{15\left( 13-x \right)}{{{x}^{2}}} \right)=\frac{15\left( 13-x \right)}{{{x}^{2}}}\cdot \sqrt{{{x}^{2}}-\frac{84}{5}x+196} \\ & \Rightarrow AY=\frac{3\sqrt{5}\left( 13-x \right)\sqrt{5{{x}^{2}}-84x+980}}{{{x}^{2}}-15x+195} \\ \end{aligned}

Substituting the value of x x we found in step 1 we get A Y 7.33798457062463468 AY\approx 7.33798457062463468 .

For the answer, 10000 A Y = 73379 \left\lfloor 10000\cdot AY \right\rfloor =\boxed{73379} .

Nicely organised. You should teach this stuff!

Fletcher Mattox - 7 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...