A very easy integral

Calculus Level 3

0 arctan ( 1 x 2 ) d x \int_0^{\infty} \arctan \left(\frac {1}{x^2}\right) dx

If the value of the integral above can be represented as π A B \dfrac {\pi ^A}{\sqrt B} , where A A and B B are integers, find the value of A + B A+B .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Sangchul Lee
Mar 28, 2019

Let J J denote the integral. Taking integration by parts, J = 0 arctan ( 1 / x 2 ) d x = [ x arctan ( 1 / x 2 ) ] 0 = 0 + 0 2 x 2 1 + x 4 d x = x 2 1 + x 4 d x . J = \int_{0}^{\infty}\arctan(1/x^2) \, \mathrm{d}x = \underbrace{ \left[ x \arctan(1/x^2) \right]_{0}^{\infty} }_{=0} + \int_{0}^{\infty} \frac{2x^2}{1+x^4} \, \mathrm{d}x = \int_{-\infty}^{\infty} \frac{x^2}{1+x^4} \, \mathrm{d}x. At this point, the last integral can be solved completely by elementary means. However, let us give a quicker solution using Glasser's master theorem . Rewriting the integrand, J = 1 x 2 + x 2 d x = 1 ( x x 1 ) 2 + 2 d x J = \int_{-\infty}^{\infty} \frac{1}{x^2 + x^{-2}} \, \mathrm{d}x = \int_{-\infty}^{\infty} \frac{1}{\left( x - x^{-1} \right)^2 + 2} \, \mathrm{d}x Now, by the Glasser's master theorem, this equals J = 1 u 2 + 2 d u = π 2 . J = \int_{-\infty}^{\infty} \frac{1}{u^2 + 2} \, \mathrm{d}u = \frac{\pi}{\sqrt{2}}.


Addendum. For the reader interested in a completely elementary solution, here is a way to go: Write J = 0 2 x 2 + x 2 d x = 0 1 x 2 x 2 + x 2 d x + 0 1 + x 2 x 2 + x 2 d x = 0 1 x 2 ( x + x 1 ) 2 2 d x + 0 1 + x 2 ( x x 1 ) 2 + 2 d x . \begin{aligned} J &= \int_{0}^{\infty} \frac{2}{x^2+x^{-2}} \, \mathrm{d}x \\ &= \int_{0}^{\infty} \frac{1 - x^{-2}}{x^2+x^{-2}} \, \mathrm{d}x + \int_{0}^{\infty} \frac{1 + x^{-2}}{x^2+x^{-2}} \, \mathrm{d}x \\ &= \int_{0}^{\infty} \frac{1 - x^{-2}}{(x + x^{-1})^2 - 2} \, \mathrm{d}x + \int_{0}^{\infty} \frac{1 + x^{-2}}{(x - x^{-1})^2 + 2} \, \mathrm{d}x. \end{aligned} Now we substitute v = x + x 1 v = x + x^{-1} for the first integral and u = x x 1 u = x - x^{-1} for the second integral. Then J = 1 v 2 2 d v + 1 u 2 + 2 d u . \begin{aligned} J &= \int_{\infty}^{\infty} \frac{1}{v^2 - 2} \, \mathrm{d}v + \int_{-\infty}^{\infty} \frac{1}{u^2 + 2} \, \mathrm{d}u. \end{aligned} The limits of the first integral may be puzzling at the first glance, but they simply reflect the fact that, as x x moves from 0 0 to \infty , v = v ( x ) v = v(x) descends from \infty to the minimun v ( 1 ) = 2 v(1) = 2 and then go back to \infty . So in effect, this is simply the sum of two convergent improper integrals which cancel out each other: 1 v 2 2 d v = 2 1 v 2 2 d v + 2 1 v 2 2 d v = 0. {``}\displaystyle \int_{\infty}^{\infty} \frac{1}{v^2 - 2} \, \mathrm{d}v \, \text{''} \, = \int_{\infty}^{2} \frac{1}{v^2 - 2} \, \mathrm{d}v + \int_{2}^{\infty} \frac{1}{v^2 - 2} \, \mathrm{d}v = 0. So we are led to the same last step as in the previous solution, hence obtaining the answer π 2 \frac{\pi}{\sqrt{2}} .

Chew-Seong Cheong
Mar 25, 2019

Similar solution with @Aaghaz Mahajan's

Using Feynman's integration trick of differentiation under the integral sign as follows:

I ( a ) = 0 tan 1 ( a x 2 ) d x I ( a ) a = 0 x 2 a 2 + x 4 d x Let u = x 4 a 2 a 2 d u = 4 x 3 d x = 1 4 a 0 u 1 4 1 + u d u Beta function: B ( m , n ) = 0 u m 1 ( 1 + u ) m + n d u = 1 4 a B ( 3 4 , 1 4 ) B ( m , n ) = Γ ( m ) Γ ( n ) Γ ( m + n ) , where Γ ( ) denotes gamma function = Γ ( 3 4 ) Γ ( 1 4 ) 4 a Γ ( 1 ) Legendre duplication: π Γ ( 2 z ) = 2 2 z 1 Γ ( z ) Γ ( z + 1 2 ) = 2 π Γ ( 1 2 ) 4 a ( 0 ! ) with z = 1 4 and by Γ ( n ) = ( n 1 ) ! = π 8 a Since Γ ( 1 2 ) = π I ( a ) = π 8 a d a = π 2 a + C where C is the constant of integration. I ( 0 ) = 0 + C = 0 C = 0 \begin{aligned} I(a) & = \int_0^\infty \tan^{-1} \left(\frac a{x^2}\right)\ dx \\ \frac {\partial I(a)}{\partial a} & = \int_0^\infty \frac {x^2}{a^2+x^4} \ dx & \small \color{#3D99F6} \text{Let }u = \frac {x^4}{a^2} \implies a^2du = 4x^3 dx \\ & = \frac 1{4\sqrt a} \int_0^\infty \frac {u^{-\frac 14}}{1+u} \ du & \small \color{#3D99F6} \text{Beta function: }B(m,n) = \int_0^\infty \frac {u^{m-1}}{(1+u)^{m+n}} \ du \\ & = \frac 1{4\sqrt a} B \left(\frac 34, \frac 14 \right) & \small \color{#3D99F6} B(m,n) = \frac {\Gamma (m) \Gamma (n)}{\Gamma (m+n)} \text{, where }\Gamma (\cdot) \text{ denotes gamma function} \\ & = \frac {\color{#3D99F6}\Gamma \left(\frac 34 \right) \Gamma \left(\frac 14 \right)}{4\sqrt a \color{#D61F06} \Gamma (1)} & \small \color{#3D99F6} \text{Legendre duplication: } \sqrt \pi \Gamma (2z) = 2^{2z-1} \Gamma(z) \Gamma \left(z + \frac 12\right) \\ & = \frac {\color{#3D99F6}\sqrt{2\pi}\Gamma \left(\frac 12 \right)}{4\sqrt a \color{#D61F06}(0!)} & \small \color{#3D99F6} \text{with }z = \frac 14 \color{#D61F06} \text{ and by }\Gamma (n) = (n-1)! \\ & = \frac \pi{\sqrt{8a}} & \small \color{#3D99F6} \text{Since }\Gamma \left(\frac 12 \right) = \sqrt \pi \\ \implies I(a) & = \int \frac \pi{\sqrt{8a}} \ da \\ & = \frac \pi{\sqrt 2}\sqrt a + C & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \\ I(0) & = 0 + C = 0 & \small \color{#3D99F6}\implies C = 0 \end{aligned}

Therefore, I ( 1 ) = 0 tan 1 ( 1 x 2 ) d x = π 2 \displaystyle I(1) = \int_0^\infty \tan^{-1} \left(\frac 1{x^2}\right)\ dx = \frac \pi{\sqrt 2} , A + B = 1 + 2 = 3 \implies A+B = 1 + 2 = \boxed 3 .


**References:

@Chew-Seong Cheong Sir, could you please tell me how to align my integrals to the center...??

Aaghaz Mahajan - 2 years, 2 months ago

Log in to reply

The LaTex code I used for my solution above. Hope it is helpful.

Chew-Seong Cheong - 2 years, 2 months ago
Rohan Shinde
Mar 23, 2019

Let J = 0 arctan ( 1 t 2 ) d t \displaystyle J=\int_0^{\infty} \arctan \left(\frac {1}{t^2}\right)dt Substituting 1 t 2 = u \displaystyle \frac {1}{t^2}= u the integral changes to J = 1 2 0 u 3 2 arctan u d u = 1 2 0 u 3 2 k = 0 ( 1 ) k 2 k + 1 u 2 k + 1 d u \displaystyle J=\frac 12\int_0^{\infty} u^{-\frac 32}\arctan u du=\frac 12\int_0^{\infty} u^{-\frac 32}\sum_{k=0}^{\infty} \frac {(-1)^k}{2k+1} u^{2k+1} du

= 1 2 0 u 1 2 k = 0 ( u 2 ) k k ! Γ ( k + 1 ) 2 k + 1 d u \displaystyle = \frac 12\int_0^{\infty} u^{-\frac 12}\sum_{k=0}^{\infty} \frac {(-u^2)^k}{k!}\cdot \frac {\Gamma(k+1)}{2k+1} du

Using substitution u 2 = x u^2=x this changes to J = 1 4 0 x 3 4 k = 0 Γ ( k + 1 ) 2 k + 1 ( x ) k k ! d x \displaystyle J=\frac 14 \int_0^{\infty} x^{-\frac 34}\sum_{k=0}^{\infty} \frac {\Gamma(k+1)}{2k+1} \frac {(-x)^k}{k!} dx

Using Ramanujan's Master theorem this integral equals to J = 1 4 Γ ( s ) ϕ ( s ) \displaystyle J=\frac 14 \Gamma(s)\phi(-s) where s = 1 4 s=\frac 14 and ϕ ( k ) = Γ ( k + 1 ) 2 k + 1 \displaystyle \phi(k)=\frac {\Gamma(k+1)}{2k+1}

Substituting the values you get the answer as J = π 2 \displaystyle J=\frac {\pi}{\sqrt 2}

Hence A = 1 A=1 and B = 2 B=2

How did you align the integrals in the center of the page??

Aaghaz Mahajan - 2 years, 2 months ago

Log in to reply

@Aaghaz Mahajan I don't know.... I mean thats the basic code I usually write... So I don't have an idea which part of the code aligns it to the center.

Rohan Shinde - 2 years, 2 months ago

But you didn't change the integration domain when substituted and used a series for arctan which is only valid for |x|<1 🤔

Bert Vitan - 2 years, 2 months ago

@Bert Vitan For the Ramanujan's Master theorem, the limits need not to be according to the radius of convergence of the function in the integral. It just needs that the function can be represented in form of infinite series near neighbourhood of x = 0 x=0 . See here

Rohan Shinde - 2 years, 2 months ago

You say it is a very easy integral but u calculated for a long page!

therefore it has Contradiction

therefore this problem is not true

Isaac YIU Math Studio - 1 year, 10 months ago
Aaghaz Mahajan
Mar 24, 2019

For those who wish to do this without applying RMT, let

F ( a ) = 0 arctan ( a x 2 ) d x \displaystyle F\left(a\right)=\int_0^{\infty}\arctan\left(\frac{a}{x^2}\right)dx
Now, differentiating under the integral sign leads us to

F ( a ) = 0 x 2 x 4 + a 2 d x \displaystyle F'\left(a\right)=\int_0^{\infty}\frac{x^2}{x^4+a^2}dx

Substituting x 2 = a tan t x^2=a\tan t we get,

F ( a ) = 1 4 a 0 π 2 2 ( sin t ) 1 2 ( cos t ) 1 2 d t \displaystyle F'\left(a\right)=\frac{1}{4\sqrt{a}}\int_0^{\frac{\pi}{2}}2\left(\sin t\right)^{\frac{1}{2}}\cdot\left(\cos t\right)^{-\frac{1}{2}}dt

This is a simple application of Beta function along with Euler's Reflection Formula and hence, we get,

F ( a ) = π 2 2 a \displaystyle F'\left(a\right)=\frac{\pi}{2\sqrt{2a}}

Now, integrating the expression, and using F ( 0 ) = 0 F\left(0\right)=0 we get

F ( a ) = π a 2 \displaystyle F\left(a\right)=\pi\sqrt{\frac{a}{2}}

@Darkrai ~Rayquaza See my approach.......

Aaghaz Mahajan - 2 years, 2 months ago

Log in to reply

@Aaghaz Mahajan For F ( a ) F'(a) there was no need to use substitution to form Integral that would give out the Beta function. Instead you could have simply applied Glasser's Master theorem as follows.
F ( a ) = 0 x 2 x 4 + a 2 d x \displaystyle F'(a) =\int_0^{\infty}\frac {x^2}{x^4+a^2}dx = 1 2 d x ( x a x ) 2 + 2 a \displaystyle =\frac 12\int_{-\infty}^{\infty} \frac {dx}{\left(x-\frac ax\right)^2 +2a} = 1 2 d x x 2 + 2 a \displaystyle =\frac 12 \int_{-\infty}^{\infty} \frac {dx}{x^2+2a} = 0 d x x 2 + 2 a \displaystyle =\int_0^{\infty} \frac {dx}{x^2+2a} = [ 1 2 a arctan ( x 2 a ) ] 0 = π 8 a \displaystyle =\left[\frac {1}{\sqrt {2a}}\arctan \left(\frac {x}{\sqrt {2a}}\right) \right]_0^{\infty}=\frac {\pi}{\sqrt {8a}}

Rohan Shinde - 2 years, 2 months ago

Log in to reply

Ohhh!!! I didn't think of that!! Thanks!!

Aaghaz Mahajan - 2 years, 2 months ago

Log in to reply

@Aaghaz Mahajan @Aaghaz Mahajan You are welcome...

Rohan Shinde - 2 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...