A Very Tanned Log

Geometry Level 1

Evaluate the sum

log cos 1 ( tan 1 ) + log cos 2 ( tan 2 ) + log cos 3 ( tan 3 ) + + log cos 44 ( tan 44 ) + log sin 45 ( tan 45 ) + log sin 46 ( tan 46 ) + + log sin 89 ( tan 89 ) . \begin{aligned} & \ \ \ \log_{\cos1}(\tan{1}) \\ &+\log_{\cos{2}}(\tan{2}) \\ &+ \log_{\cos{3}}(\tan{3}) \\& +\ldots \\ &+ \log_{\cos{44}} (\tan{44}) \\ &+ \log_{\sin{45}}(\tan{45}) \\ &+ \log_{\sin46}(\tan{46}) \\ &+\ldots \\ &+ \log_{\sin89}(\tan{89}). \end{aligned}

Note: All angles are in degrees, and be aware that the base changes from cos \cos to sin \sin .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Trevor Arashiro
Nov 22, 2014

cos x = sin ( 90 x ) \cos x=\sin(90-x)

So the logs tan ( x ) \tan(x) and tan 90 x \tan{90-x} have the same base.

Using the log property log c a + log c b = log c a b \log_ca+\log_cb=\log_cab

We get 1 89 log cos x ( tan x tan ( 90 x ) ) \displaystyle \sum_1^{89} \log_{\cos{x}} \left({\tan{x}*\tan{(90-x)}}\right)

log sin 45 ( tan 45 ) + 1 44 log cos x ( sin x cos x sin ( 90 x ) cos ( 90 x ) ) \log_{\sin45}\left(\tan 45\right)+\displaystyle \sum_1^{44} \log_{\cos{x}}\left({\dfrac{\sin x}{\cos x}*\dfrac{\sin{(90-x)}}{\cos{(90-x)}}}\right)

0 + 1 44 log cos x ( sin x cos x cos x sin x ) 0+\displaystyle \sum_1^{44} \log_{\cos{x}} \left({\dfrac{\sin x}{\cos x}*\dfrac{\cos{x}}{\sin{x}}}\right)

1 44 log cos x 1 \displaystyle \sum_1^{44} \log_{\cos{x}}1

Regardless of what cos x is, each log will be 0. Thus our total sum is 0.

I checked my answer in a calculator and I still got a decimal answer.. Why is it that I am wrong??

Mark Vincent Mamigo - 6 years, 6 months ago

Log in to reply

It is most likely to be rounding errors.

Chew-Seong Cheong - 5 years, 8 months ago

got good guesses

math man - 6 years, 6 months ago

Why the problem is reported? I guess latex doesn't look good (tangent looks like its in power) you should clarify it in problem.

Krishna Sharma - 6 years, 6 months ago

Log in to reply

Ya, probably

Trevor Arashiro - 6 years, 6 months ago

Log in to reply

The clarification stated "Base, coefficient , power ??? Nothing is clear. Please make it clear."

Please ensure that you are receiving clarification emails from us, to help you deal with the dispute.

It is also not immediately obvious that the calculations should be done in degrees instead of radians. I have added a line in. It would be much better for you to state 1 1 ^ \circ directly instead.

Calvin Lin Staff - 6 years, 6 months ago

@Trevor Arashiro can you please explain why wolfram alpha says this.

Sualeh Asif - 6 years, 6 months ago

Log in to reply

What does it say?

Trevor Arashiro - 6 years, 6 months ago

Log in to reply

Look at the link of wolfram alpha

Sualeh Asif - 6 years, 6 months ago

Log in to reply

@Sualeh Asif Could be because it's interpreting it as radians, because since tan, sin, and cos are all positive between 1 and 89, I'm not sure if it's posible to be getting an I any where

Trevor Arashiro - 6 years, 6 months ago

Why are you writing the coefficient as the power. I've edited the problem now. Simply write it as simple latex. !!!

Sandeep Bhardwaj - 6 years, 6 months ago

Log in to reply

Edit the solution too

Krishna Sharma - 6 years, 6 months ago

Ok ..le falta un poko mas..

Pablo Rosas - 5 years, 10 months ago

Let the sum of the expression be S S , then we have:

S = k = 1 44 log cos k ( tan k ) + k = 45 89 log sin k ( tan k ) = k = 1 44 log ( tan k ) log ( cos k ) + k = 45 89 log ( tan k ) log ( sin k ) = k = 1 44 log ( sin k ) log ( cos k ) log ( cos k ) + k = 45 89 log ( sin k ) log ( cos k ) log ( sin k ) = k = 1 44 log ( sin k ) log ( cos k ) log ( cos k ) + k = 45 89 log ( cos ( 90 k ) ) log ( sin ( 90 k ) ) log ( cos ( 90 k ) ) = k = 1 44 log ( sin k ) log ( cos k ) log ( cos k ) + k = 1 44 log ( cos k ) log ( sin k ) log ( cos k ) = 0 \begin{aligned} S & = \sum_{k=1}^{44} \log_{\cos k^\circ} ( \tan k^\circ) + \sum_{k=45}^{89} \log_{\sin k^\circ} (\tan k^\circ ) \\ & = \sum_{k=1}^{44} \frac{\log ( \tan k^\circ)}{\log (\cos k^\circ)} + \sum_{k=45}^{89} \frac{\log ( \tan k^\circ)}{\log (\sin k^\circ)} \\ & = \sum_{k=1}^{44} \frac{\log (\sin k^\circ) - \log (\cos k^\circ)}{\log (\cos k^\circ)} + \sum_{k=45}^{89} \frac{\log (\sin k^\circ) - \log (\cos k^\circ)}{\log (\sin k^\circ)} \\ & = \sum_{k=1}^{44} \frac{\log (\sin k^\circ) - \log (\cos k^\circ)}{\log (\cos k^\circ)} + \sum_{k=\color{#3D99F6}{45}}^{\color{#3D99F6}{89}} \frac{\log (\color{#3D99F6}{\cos (90- k)^\circ}) - \log (\color{#3D99F6}{\sin (90 - k)^\circ)}}{\log (\color{#3D99F6}{\cos (90- k)^\circ})} \\ & = \sum_{k=1}^{44} \frac{\log (\sin k^\circ) - \log (\cos k^\circ)}{\log (\cos k^\circ)} + \sum_{k=\color{#3D99F6}{1}}^{\color{#3D99F6}{44}} \frac{\log (\color{#3D99F6}{\cos k^\circ}) - \log (\color{#3D99F6}{\sin k^\circ)}}{\log (\color{#3D99F6}{\cos k^\circ})} \\ & = \boxed{0} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...