Acquired Area

Geometry Level 2

Find the area of the largest rectangle having perimeter of 200.


The answer is 2500.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jul 10, 2020

Let the side lengths of the rectangle be a a and b b . Then the perimeter is 2 a + 2 b = 200 2a+2b = 200 , a + 100 \implies a+100 . By AM-GM inequality we have:

a + b 2 a b 100 2 a b a b ( 100 2 ) 2 = 2500 \begin{aligned} a + b & \ge 2\sqrt{ab} \\ 100 & \ge 2 \sqrt{ab} \\ ab & \le \left(\frac {100}2 \right)^2 = 2500 \end{aligned}

Since a b ab is the area of the rectangle. The maximum area is 2500 \boxed{2500} when a = b = 50 a=b = 50 .

Mahdi Raza
Jul 9, 2020

With a fixed perimeter given, the area is largest when all the sides are equal i.e they form a square. Since the given perimeter is 200 and there are 4 sides, each individual side of the square is 50. Hence the area of this square is

50 × 50 = 2500 50 \times 50 = \boxed{2500}

n i c e s o l u t i o n \color{#3D99F6}{nice solution}

Razing Thunder - 11 months, 1 week ago

Log in to reply

I k n o w, b u t i f y o u h a d m e n t i o n e d t h a t s q u a r e s a r e r e c t a n g l e s, i t w o u l d h a v e b e e n b e t t e r \color{#333333}\text{I} \color{#D61F06}\text{ k} \color{#3D99F6}\text{n} \color{#20A900}\text{o} \color{cyan}\text{w, } \color{magenta}\text{b} \color{#333333}\text{u} \color{#333333}\text{t } \color{#D61F06}\text{i} \color{#3D99F6}\text{f } \color{#20A900}\text{y} \color{cyan}\text{o} \color{magenta}\text{u} \color{#333333}\text{ h} \color{#333333}\text{a} \color{#D61F06}\text{d} \color{#3D99F6}\text{ m} \color{#20A900}\text{e} \color{cyan}\text{n} \color{magenta}\text{t} \color{#333333}\text{i} \color{#333333}\text{o} \color{#D61F06}\text{n} \color{#3D99F6}\text{e} \color{#20A900}\text{d } \color{cyan}\text{t} \color{magenta}\text{h} \color{#333333}\text{a} \color{#333333}\text{t } \color{#D61F06}\text{s} \color{#3D99F6}\text{q} \color{#20A900}\text{u} \color{cyan}\text{a} \color{magenta}\text{r} \color{#333333}\text{e} \color{#333333}\text{s} \color{#D61F06}\text{ a} \color{#3D99F6}\text{r} \color{#20A900}\text{e} \color{cyan}\text{ r} \color{magenta}\text{e} \color{#333333}\text{c} \color{#333333}\text{t} \color{#D61F06}\text{a} \color{#3D99F6}\text{n} \color{#20A900}\text{g} \color{cyan}\text{l} \color{magenta}\text{e} \color{#333333}\text{s, } \color{#333333}\text{i} \color{#D61F06}\text{t } \color{#3D99F6}\text{w} \color{#20A900}\text{o} \color{magenta}\text{u} \color{#333333}\text{l} \color{#333333}\text{d } \color{#D61F06}\text{h} \color{#3D99F6}\text{a} \color{#20A900}\text{v} \color{cyan}\text{e } \color{magenta}\text{b} \color{#333333}\text{e} \color{#333333}\text{e} \color{#D61F06}\text{n } \color{#3D99F6}\text{b} \color{#20A900}\text{e} \color{cyan}\text{t} \color{#333333}\text{t} \color{#D61F06}\text{e} \color{#3D99F6}\text{r} @Razing Thunder

Frisk Dreemurr - 11 months, 1 week ago

Log in to reply

if i mention this question becomes easy ( by the way do you have much time for writing colorful comment)

Razing Thunder - 11 months, 1 week ago

Log in to reply

@Razing Thunder Y e s, I d o ! \color{#333333}\text{Y} \color{#D61F06}\text{e} \color{#3D99F6}\text{s, } \color{#20A900}\text{I } \color{cyan}\text{d} \color{magenta}\text{o} \color{#333333}\text{!} @Razing Thunder

Frisk Dreemurr - 11 months, 1 week ago

Log in to reply

@Frisk Dreemurr then you can do some productive (for example -> learn python computer language )

Razing Thunder - 11 months, 1 week ago

Log in to reply

@Razing Thunder Yes, I am learning Unity3D and C#

Frisk Dreemurr - 11 months, 1 week ago

Log in to reply

@Frisk Dreemurr so do not waste your time in writing colorful comments

Razing Thunder - 11 months, 1 week ago

@Razing Thunder I don't use Python for some reason...

Frisk Dreemurr - 11 months, 1 week ago
Juanma Navarro
Jul 10, 2020

We could solve this problem using Calculus: \text{We could solve this problem using Calculus:}

Let \text{Let} x x and \text{and} y y denote the lengths of the rectangle, \text{denote the lengths of the rectangle,} P P the perimeter, and \text{the perimeter, and} A A the area \text{the area}

We know \text{We know} P = 200 P=200 \Longrightarrow 2 x + 2 y = 200 2x+2y=200 \Longrightarrow x + y = 100 x+y=100 \Longrightarrow y = 100 x y=100-x

We are interested on maximize \text{We are interested on maximize} A = x y A=xy . Let´s substitute \text{. Let´s substitute} y y on this equation \text{on this equation} . We obtain: \text{. We obtain:}

A = x ( 100 x ) A=x(100-x) \Longrightarrow A = 100 x x 2 A=100x-x^2

Derivating and equating to 0 we can search our candidates for maximize A: \text{Derivating and equating to 0 we can search our candidates for maximize A:}

A = 100 2 x = 0 A' = 100 - 2x = 0 \Longrightarrow x = 50 \boxed{x=50}

Using the second derivative, we can prove: \text{Using the second derivative, we can prove:} A = 2 < 0 A'' = -2 < 0 \Longrightarrow x = 50 x=50 maximize A \text{maximize A}

We can calculate \text{We can calculate} y : y:

y = 100 x y=100-x \Longrightarrow y = 50 \boxed{y=50}

Finally, we can say that the maximum area should be: \text{Finally, we can say that the maximum area should be: }

A = x y A=xy \Longrightarrow A = 50 50 A=50 * 50 \Longrightarrow A = 2500 \boxed{A=2500}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...