Advance Happy New Year 2015!

Algebra Level 1

Find the minimum value of

x 2 + y 2 z + z 2 + x 2 y + y 2 + z 2 x , \frac { { x }^{ 2 }+{ y }^{ 2 } }{ z } +\frac { { z }^{ 2 }+{ x }^{ 2 } }{ y } +\frac { { y }^{ 2 }+{ z }^{ 2 } }{ x },

subject to x + y + z = 2015 x + y + z = 2015 and x , y , z > 0 x, y ,z > 0 .


The answer is 4030.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Madhuri Phute
Apr 26, 2016

The expression can be split and rewritten as:

x 2 z + y 2 z + y 2 x + z 2 x + z 2 y + x 2 y \frac{x^2}{z} + \frac{y^2}{z} + \frac{y^2}{x} + \frac{z^2}{x} + \frac{z^2}{y} + \frac{x^2}{y}

Applying Titu's Lemma Theorem to the above expression, we get:

x 2 z + y 2 z + y 2 x + z 2 x + z 2 y + x 2 y 4 ( x + y + z ) 2 ( x + y + z ) \frac{x^2}{z} + \frac{y^2}{z} + \frac{y^2}{x} + \frac{z^2}{x} + \frac{z^2}{y} + \frac{x^2}{y} \geq \frac{4(x + y + z)}{2(x + y + z)}

Solving the above inequality and substituting the value of x + y + z x + y + z , we get:

x 2 + y 2 z + z 2 + x 2 y + y 2 + z 2 x 4030 \frac{x^2 + y^2}{z} + \frac{z^2 + x^2}{y} + \frac{y^2 + z^2}{x} \geq 4030

Thus, the minimum value of the expression is 4030 4030

in 4th line in numerator it should be square of (x+y+z)

Chirayu Bhardwaj - 4 years, 11 months ago

Log in to reply

Yes...you are

Anubhav Mahapatra - 3 years, 6 months ago
Surya Prakash
Dec 10, 2014

x 2 + y 2 z + y 2 + z 2 x + z 2 + x 2 y = x y ( x 2 + y 2 ) + y z ( y 2 + z 2 ) + x z ( z 2 + x 2 ) x y z N o w , x y ( x 2 + y 2 ) x y ( 2 x y ) = 2 x 2 y 2 S o , x 2 + y 2 z + y 2 + z 2 x + z 2 + x 2 y 2 x 2 y 2 + 2 y 2 z 2 + 2 z 2 x 2 x y z N o w , 2 x 2 y 2 + 2 y 2 z 2 + 2 z 2 x 2 = ( x 2 y 2 + y 2 z 2 ) + ( z 2 x 2 + x 2 y 2 ) + ( y 2 z 2 + z 2 x 2 ) 2 ( x 2 y z + x y 2 z + x y z 2 ) = 2 x y z ( x + y + z ) S o , x 2 + y 2 z + y 2 + z 2 x + z 2 + x 2 y 2 x y z ( x + y + z ) x y z = 2 ( x + y + z ) = 4030 \frac { { x }^{ 2 }+{ y }^{ 2 } }{ z } +\frac { { y }^{ 2 }+{ z }^{ 2 } }{ x } +\frac { { z }^{ 2 }+{ x }^{ 2 } }{ y } =\frac { xy({ x }^{ 2 }+{ y }^{ 2 })+yz({ y }^{ 2 }+{ z }^{ 2 })+xz({ z }^{ 2 }+{ x }^{ 2 }) }{ xyz } \\ Now,\\ \qquad \qquad xy({ x }^{ 2 }+{ y }^{ 2 })\quad \ge \quad xy(2xy)\quad =\quad 2{ x }^{ 2 }{ y }^{ 2 }\\ So,\\ \qquad \frac { { x }^{ 2 }+{ y }^{ 2 } }{ z } +\frac { { y }^{ 2 }+{ z }^{ 2 } }{ x } +\frac { { z }^{ 2 }+{ x }^{ 2 } }{ y } \quad \ge \quad \frac { 2{ x }^{ 2 }{ y }^{ 2 }+2{ y }^{ 2 }{ z }^{ 2 }+2{ z }^{ 2 }{ x }^{ 2 } }{ xyz } \\ Now,\\ \qquad \qquad 2{ x }^{ 2 }{ y }^{ 2 }+2{ y }^{ 2 }{ z }^{ 2 }+2{ z }^{ 2 }{ x }^{ 2 }=({ x }^{ 2 }{ y }^{ 2 }+{ y }^{ 2 }{ z }^{ 2 })+({ z }^{ 2 }{ x }^{ 2 }+{ x }^{ 2 }{ y }^{ 2 })+({ y }^{ 2 }{ z }^{ 2 }+{ z }^{ 2 }{ x }^{ 2 })\\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ge 2({ x }^{ 2 }yz+x{ y }^{ 2 }z+xy{ z }^{ 2 })\\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad =2xyz(x+y+z)\\ So,\\ \qquad \frac { { x }^{ 2 }+{ y }^{ 2 } }{ z } +\frac { { y }^{ 2 }+{ z }^{ 2 } }{ x } +\frac { { z }^{ 2 }+{ x }^{ 2 } }{ y } \quad \ge \quad \frac { 2xyz(x+y+z) }{ xyz } \quad =\quad 2(x+y+z)\\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad =4030

This question is taken RMO 2014 Andhra Pradesh region............Slightly edited.

Surya Prakash - 6 years, 6 months ago

Log in to reply

Will we get full marks for direct applying Titu's Lemma?

Swapnil Das - 5 years, 6 months ago

Log in to reply

Yes why not depends on the mood of examiner!the minimum u get for this is 14\17

Yash Joshi - 4 years, 10 months ago

Log in to reply

@Yash Joshi Hmm, yeah.

Swapnil Das - 4 years, 10 months ago
Tyler Hanna
Dec 18, 2014

Since this equation is symmetric about x = y = z x = y = z , I guessed (correctly, apparently), that the mimimum value does in fact lie on x = y = z x = y = z . Plugging in 2015 3 \frac{2015}{3} for x, y, and z, the equation simplifies to 2 2015 = 4030 2 * 2015 = \boxed{4030} .

It was an extremely lucky guess, though, as this equation could easily have had three (or even six) separate minimum points which evaulate to the same value. That sort of outcome would be more likely for a trig-type equation, though, as those tend to oscillate around the origin in very strange patterns.

I tried solving this before using Lagrange Multipliers, but the equations tried to eat me.

It's a common falacy that minimum occurs when a the terms are equal, and fails more times it works. Be careful while using it in the future. BTW - "equations tried to eat me" xD

Pratyush Pandey - 4 years, 8 months ago

First, it's trivial to prove that 2 ( a 2 + b 2 ) ( a + b ) 2 2({ a }^{ 2 }+{ b }^{ 2 })\ge { (a+b) }^{ 2 } .

Applying this, we get that x 2 + y 2 z = 2 ( x 2 + y 2 ) 2 z ( x + y ) 2 2 z \frac { { x }^{ 2 }+{ y }^{ 2 } }{ z } =\frac { 2({ x }^{ 2 }+{ y }^{ 2 }) }{ 2z } \ge \frac { { (x+y) }^{ 2 } }{ 2z }

y 2 + z 2 x = 2 ( y 2 + z 2 ) 2 x ( y + z ) 2 2 x \frac { { y }^{ 2 }+{ z }^{ 2 } }{ x } =\frac { 2({ y }^{ 2 }+{ z }^{ 2 }) }{ 2x } \ge \frac { { (y+z) }^{ 2 } }{ 2x }

z 2 + x 2 y = 2 ( z 2 + x 2 ) 2 y ( z + x ) 2 2 y \frac { { z }^{ 2 }+{ x }^{ 2 } }{ y } =\frac { 2({ z }^{ 2 }+{ x }^{ 2 }) }{ 2y } \ge \frac { { (z+x) }^{ 2 } }{ 2y } .

Also, applying T2's lemma (Titu's lemma), we have that:

( x + y ) 2 2 z + ( y + z ) 2 2 x + ( z + x ) 2 2 y ( x + y + y + z + z + x ) 2 2 x + 2 y + 2 z = [ 2 ( x + y + z ) ] 2 2 ( x + y + z ) = 2 ( x + y + z ) \frac { { (x+y) }^{ 2 } }{ 2z } + \frac { { (y+z) }^{ 2 } }{ 2x } + \frac { { (z+x) }^{ 2 } }{ 2y } \ge \frac { { (x+y+y+z+z+x) }^{ 2 } }{ 2x+2y+2z } =\frac { [2{ (x+y+z)] }^{ 2 } }{ 2(x+y+z) } =2(x+y+z)

Hence, x 2 + y 2 z + y 2 + z 2 x + z 2 + x 2 y ( x + y ) 2 2 z + ( y + z ) 2 2 x + ( z + x ) 2 2 y 2 ( x + y + z ) = 4030 \frac { { x }^{ 2 }+{ y }^{ 2 } }{ z } + \frac { { y }^{ 2 }+{ z }^{ 2 } }{ x } +\frac { { z }^{ 2 }+{ x }^{ 2 } }{ y } \ge \frac { { (x+y) }^{ 2 } }{ 2z } + \frac { { (y+z) }^{ 2 } }{ 2x } + \frac { { (z+x) }^{ 2 } }{ 2y } \ge 2(x+y+z) = \boxed{4030} .

Well, a few minutes after posting this question, I have an even easier approach to this question using the very same T2's lemma.

x 2 + y 2 z + y 2 + z 2 x + z 2 + x 2 y = x 2 z + y 2 z + y 2 x + z 2 x + z 2 y + x 2 y ( x + y + y + z + z + x ) 2 z + z + x + x + y + y = 2 ( x + y + z ) = 4030 \frac { { x }^{ 2 }+{ y }^{ 2 } }{ z } +\frac { { y }^{ 2 }+{ z }^{ 2 } }{ x } +\frac { { z }^{ 2 }+{ x }^{ 2 } }{ y } =\frac { { x }^{ 2 } }{ z } +\frac { y^{ 2 } }{ z } +\frac { { y }^{ 2 } }{ x } +\frac { { z }^{ 2 } }{ x } +\frac { { z }^{ 2 } }{ y } +\frac { { x }^{ 2 } }{ y } \ge \frac { { (x+y+y+z+z+x) }^{ 2 } }{ z+z+x+x+y+y } =2(x+y+z)=\boxed { 4030 } .

And we're done.

Trung Đặng Đoàn Đức - 5 years, 8 months ago

Did the same way..

Anubhav Mahapatra - 3 years, 6 months ago
Yohan You
Dec 9, 2014

if x+y+z=2015 it should be divided equally. so that, the value of x=2015/3 then we a x=y=z

therefore : (x²+y²)/z + (z²+x²)/y + (y²+z²)/x =[(2015/3)² + (2015/3)²] / (2015/3)=1343.333333 then ; 1343.333333+1343.333333+1343.333333=4030 and (1343.333333)x(3)=4030

How do you know that "it should be divided equally"?

Calvin Lin Staff - 6 years, 6 months ago

Log in to reply

@Calvin Lin I noticed the following : for any three no. x,y,z such tat x+y+z =a minimum x^2+y^2+z^2 is achieved when the three are equal i.e a/3. Why? Also if x,y,z are integers then we divide them to the three closest no. eg. x+y+z=2015, we take them as 672,672,671 as 2015 is closer to 2016 than to 2013 . Similarly if x+y+z=2014 ,we take them as 671,671,672. as 2014 is closer to 2013 than to 2015. This technique usually does the trick , But why ?

Keshav Tiwari - 6 years, 5 months ago
Nandni Jotwani
Jun 20, 2016

We can apply titu's lemma and solve this question - We can rewrite it and simply use the lemma

Michael Bartholic
Dec 28, 2014

It's as easy as realizing the value of x, y, and z and then plugging the numbers in and simplifying. There is no need for the large expression until after you know the numbers.

Because you are looking for the minimum value of the expression, you want x, y, and z to be as large as possible since they will be the denominators (the larger the denominator of a fraction the smaller the value will reduce to).

I simply divided 2015 by 3 , as that will allow for the largest values of each of the 3 variables. So x, y, and z all equal 2015/3.

Next, plug 2015/3 in for all of the variables in the expression and simplify. You get 1343.3333... for each fraction individually and there for 4030 for all 3 added together.

So the answer to the problem is 4030.

Agustin M
Dec 9, 2014

The expression may be rewritten as S=x^2/z+x^2/y+... and that sum cyclic. Applyin CS, you obtain S=>{2(x+y+z)=4030

Can you state the CS step? Thanks!

Calvin Lin Staff - 6 years, 6 months ago

Log in to reply

Sorry , but i did it assuming that x , y , z R + x , y , z \in R^{+}

Applying titu's leema,

x 2 z + . . . . . . . . . . . 4 ( x + y + z ) 2 2 ( x + y + z ) \dfrac{x^{2}}{z} + ........... \geq \dfrac{4(x + y + z)^{2}}{2(x + y + z)}

thus,

minimum = 4030. Sir why it happened? what is CS?

U Z - 6 years, 6 months ago

Log in to reply

CS is Cauchy Schwarz. Titu's lemma is a lemma of the Cauchy Schwarz Theorem.

What do you mean by "why it happened"?

Calvin Lin Staff - 6 years, 6 months ago

Log in to reply

@Calvin Lin Here its not stated that to which set x,y,z belongs , if it belongs to set of real numbers then why considering only the set of positive real numbers it gives minimum

U Z - 6 years, 6 months ago

Log in to reply

@U Z Right. I believe that the condition x , y , z > 0 x, y, z > 0 is necessary, so was looking into that.

With x = x 3 , y = x , z = 2015 x = x { 3}, y = -x, z = 2015 , we get the sum to be 2 x 2 2015 \frac{ 2x^2 } { 2015 } , which approaches 0 as x x appraoches 0. Hence, the condition is needed (and I have added it in).

Calvin Lin Staff - 6 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...