After few days

Find the last digit of ( 1 ! + 2 ! + 3 ! + 33 ! ) 33 (1!+2!+3! +\cdots 33!)^{33} .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Satwik Murarka
Apr 7, 2017

Solution:

Dividing the expression by 10 will help us to find the last digit,

( 1 ! + 2 ! + 3 ! + 4 ! 33 ! ) 1 + 2 + 4 + 6 + 0 + 0..... + 0 ( m o d 10 ) ( 10 n ! 5 ) ( 1 ! + 2 ! + 3 ! + 4 ! 33 ! ) 33 3 33 ( m o d 10 ) 3 33 3 ( m o d 10 ) \begin{aligned}(1!+2!+3!+4!\cdots33!)&\equiv1+2+4+6+0+0.....+0 \pmod{10} \hspace{1cm}(10|n!≥5)\\ (1!+2!+3!+4!\cdots33!)^{33}&\equiv3^{33}\pmod{10}\\ 3^{33}&\equiv3 \pmod{10}\end{aligned}

Last digit of ( 1 ! + 2 ! + 3 ! 33 ! ) 33 = 3 (1!+2!+3!\cdots33!)^{33}=\boxed{3}

Beautiful.

Zach Abueg - 4 years, 2 months ago

If you want last two digits then it will be more challenging

Kushal Bose - 4 years, 2 months ago

Log in to reply

Yes, it is. I'm getting an answer of

1 3 33 ( 3 ) 11 ( m o d 100 ) 53 ( m o d 100 ) 13^{33} \equiv (-3)^{11} \pmod{100} \equiv 53 \pmod{100} .

Brian Charlesworth - 4 years, 2 months ago

Log in to reply

Yes I also got this

Kushal Bose - 4 years, 2 months ago

Log in to reply

@Kushal Bose Since it was your idea, did you want to post the mod 100 version of this problem or shall I?

Brian Charlesworth - 4 years, 2 months ago

Log in to reply

@Brian Charlesworth U can do it I have no problem

Kushal Bose - 4 years, 2 months ago

Nice solution. We know that 3 33 3 ( m o d 10 ) 3^{33} \equiv 3 \pmod{10} because 3 2 1 m o d 10 3^{2} \equiv -1 \mod{10} , and so 3 33 = 3 2 16 + 1 ( ( 1 ) 16 × 3 ) ( m o d 10 ) 3 ( m o d 10 ) 3^{33} = 3^{2*16 + 1} \equiv ((-1)^{16} \times 3) \pmod{10} \equiv 3 \pmod{10} .

Brian Charlesworth - 4 years, 2 months ago

Thank you all.@Brian Charlesworth Sir can you tell me how did you compute 1 3 33 53 ( m o d 100 ) 13^{33}\equiv53\pmod{100}

Satwik Murarka - 4 years, 2 months ago

Log in to reply

This is probably longer than necessary, but here is my computation.

Since the last two digits of 10 ! 10! are 00 00 we only need to consider

( 1 ! + 2 ! + 3 ! + 4 ! + 5 ! + 6 ! + 7 ! + 8 ! + 9 ! ) ( m o d 100 ) (1! + 2! + 3! + 4! + 5! + 6! + 7! + 8! + 9!) \pmod{100} \equiv

( 1 + 2 + 6 + 24 + 20 + 20 + 40 + 20 + 80 ) ( m o d 100 ) (1 + 2 + 6 + 24 + 20 + 20 + 40 + 20 + 80) \pmod{100} \equiv

213 ( m o d 100 ) 13 ( m o d 13 ) 213 \pmod{100} \equiv 13 \pmod{13} .

Now 1 3 3 = 13 × 169 13 × 69 ( m o d 100 ) 13^{3} = 13 \times 169 \equiv 13 \times 69 \pmod{100} \equiv

13 ( 70 1 ) ( m o d 100 ) ( 910 13 ) ( m o d 100 ) 13(70 - 1) \pmod{100} \equiv (910 - 13) \pmod{100} \equiv

3 ( m o d 13 ) -3 \pmod{13} . So now we have that

1 3 33 = 1 3 3 11 ( 3 ) 11 ( m o d 100 ) 3 ( 3 5 ) 2 ( m o d 100 ) 13^{33} = 13^{3*11} \equiv (-3)^{11} \pmod{100} \equiv -3*(3^{5})^{2} \pmod{100} \equiv

3 4 3 2 ( m o d 100 ) 3 ( 40 + 3 ) 2 ( m o d 100 ) -3*43^{2} \pmod{100} \equiv -3*(40 + 3)^{2} \pmod{100} \equiv

3 ( 1600 + 240 + 9 ) ( m o d 100 ) 3 49 ( m o d 100 ) -3*(1600 + 240 + 9) \pmod{100} \equiv -3*49 \pmod{100} \equiv

3 51 ( m o d 100 ) 53 ( m o d 100 ) 3*51 \pmod{100} \equiv 53 \pmod{100} .

Brian Charlesworth - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...