Can you solve this RMO question? Part 2

{ a 2 = b c + 1 b 2 = c a + 1 \begin{cases} a^2 = bc + 1 \\ b^2 = ca + 1 \end{cases}

How many ordered triples of integers are there which satisfy the above system of equations?

8 5 7 6

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aditya Dhawan
Mar 8, 2016

S u b t r a c t i n g t h e 2 e q u a t i o n s g i v e s : a 2 b 2 = c ( b a ) a + b = c o r a = b C a s e 1 I f a = b , t h e n p l u g g i n g i n t o t h e f i r s t e q u a t i o n w e g e t , a 2 = a c + 1 c = a 2 1 a = a 1 a B u t c i s a n i n t e g e r w h i c h i m p l i e s a = ± 1 = b a n d c = 0 T h u s 2 o r d e r e d t r i p l e t s a r e ( 1 , 1 , 0 ) a n d ( 1 , 1 , 0 ) C a s e 2 P l u g g i n g t h e v a l u e o f c i n t o t h e f i r s t e q u a t i o n , w e g e t a 2 + b 2 + a b = 1 ( a + b ) 2 = 1 + a b a b + 1 0 a b 1 ( A ) N o w n o t e t h a t 1 a b = a 2 + b 2 1 a b 0 a b 1 ( B ) ( A ) , ( B ) a b { 1 , 0 , 1 } a = 0 , b = ± 1 , b = 0 , a = ± 1 , a = 1 , b = 1 , a = 1 , b = 1 , a = 1 , b = 1 a n d a = 1 , b = 1 R e c a l l c = ( a + b ) T h u s a l l o r d e r e d t r i p l e t s a r e a s f o l l o w s : 1 ) ( 1 , 1 , 0 ) 2 ) ( 1 , 1 , 0 ) 3 ) ( 0 , 1 , 1 ) 4 ) ( 0 , 1 , 1 ) 5 ) ( 1 , 0 , 1 ) 6 ) ( 1 , 0 , 1 ) 7 ) ( 1 , 1 , 0 ) 8 ) ( 1 , 1 , 0 ) T h u s d e s i r e d a n s w e r = 8 Subtracting\quad the\quad 2\quad equations\quad gives:\\ { a }^{ 2 }-{ b }^{ 2 }=c(b-a)\Longrightarrow \boxed { a+b=-c\quad or\quad a=b } \\ \\ Case\quad 1\\ If\quad a=b,\quad then\quad plugging\quad into\quad the\quad first\quad equation\quad we\quad get,\\ { a }^{ 2 }=ac+1\Longrightarrow c=\frac { { a }^{ 2 }-1 }{ a } =\quad a\quad -\frac { 1 }{ a } \\ But\quad c\quad is\quad an\quad integer\quad which\quad implies\quad a=\pm 1=b\quad and\quad c=0\\ Thus\quad 2\quad ordered\quad triplets\quad are\quad (1,1,0)\quad and\quad (-1,-1,0)\\ \\ Case\quad 2\\ Plugging\quad the\quad value\quad of\quad c\quad into\quad the\quad first\quad equation,\quad we\quad get\\ { a }^{ 2 }+{ b }^{ 2 }+ab=1\Longrightarrow { (a+b) }^{ 2 }=1+ab\Longrightarrow ab+1\ge 0\Longrightarrow ab\ge -1\quad (A)\\ Now\quad note\quad that\quad 1-ab={ a }^{ 2 }+{ b }^{ 2 }\Longrightarrow 1-ab\ge 0\Longrightarrow ab\le 1(B)\\ \\ (A),(B)\Longrightarrow ab\in \left\{ -1,0,1 \right\} \Longrightarrow a=0,b=\pm 1,\quad b=0,a=\pm 1,\quad a=-1,b=1,\quad a=1,b=-1,\quad a=1,b=1\quad and\quad a=-1,b=-1\\ Recall\quad c=-(a+b)\\ Thus\quad all\quad ordered\quad triplets\quad are\quad as\quad follows:-\\ 1)(1,1,0)\\ 2)(-1,-1,0)\\ 3)(0,-1,1)\\ 4)(0,1,-1)\\ 5)(1,0,-1)\\ 6)(-1,0,1)\\ 7)(-1,1,0)\\ 8)(1,-1,0)\\ Thus\quad desired\quad answer=\quad \boxed { 8 } \\ \\ \\ \\ \\

Moderator note:

Great solution, explaining how to bound the value of a b ab to restrict the cases that we're looking at.

Avoid placing everything in LaTex brackets. You only need to use it for the mathematical formulas.

Calvin Lin Staff - 5 years, 3 months ago

Lovely problem!

Dipanjan Chowdhury - 5 years, 3 months ago
Ankit Kumar Jain
Mar 13, 2016

Subtracting the equations yields a 2 b 2 = c ( b a ) { a + b + c = 0 a = b a^{2} - b^{2} = c(b - a) \begin{cases}{a + b + c = 0} \\ {a = b} \end{cases}


a = b ( a , b , c ) = ( 1 , 1 , 0 ) , ( 1 , 1 , 0 ) a = b \Rightarrow \boxed{(a , b , c) = (1 , 1 , 0) , (-1 , -1 , 0)} .


Adding the two equations gives a 2 + b 2 = c ( a + b ) + 2 a^{2} + b^{2} = c(a + b) + 2 .

a + b + c = 0 a + b = c a + b + c = 0 \Rightarrow a + b = -c ,

Replacing gives a 2 + b 2 + c 2 = 2 a^{2} + b^{2} + c^{2} = 2

Now this gives us the set of solutions as ( 0 , 1 , 1 ) \boxed{(0 , 1 , - 1)}

So from the set we can obtain 6 6 solutions namely ( 0 , 1 , 1 ) , ( 0 , 1 , 1 ) , ( 1 , 0 , 1 ) , ( 1 , 1 , 0 ) , ( 1 , 0 , 1 ) , ( 1 , 1 , 0 ) \boxed{(0 , -1 , 1) , (0 , 1 , -1) , (1 , 0 , -1) , (1 , -1 , 0) , (-1 , 0 ,1) , (-1 , 1 , 0)} and we had two solutions earlier so altogether 8 \boxed{8} solutions.

Moderator note:

Separating the write-up into distinct section allows the reader to follow your solution more easily.

@Calvin Lin Sir actually I don't know how to split into paragraphs...

Ankit Kumar Jain - 5 years, 2 months ago

Log in to reply

@Ankit Kumar Jain To separate your text into paragraphs,first write your first parahraph,then skip one line and then write your second paragraph.

Abdur Rehman Zahid - 5 years, 2 months ago

Log in to reply

@Abdur Rehman Zahid Thanks a lot for helping me out....

Ankit Kumar Jain - 5 years, 2 months ago

Log in to reply

@Ankit Kumar Jain Glad to help out :)

Abdur Rehman Zahid - 5 years, 2 months ago

@Calvin Lin Sir is it fine now....

Ankit Kumar Jain - 5 years, 2 months ago

Log in to reply

Yes, this is much better.

Calvin Lin Staff - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...