All in "One"!

Calculus Level 5

7 9 sgn ( sin 2 ( x { x } ) ) d x = a ( b + c ) 2 \large \int_{7}^{9} \text{sgn}\left(\sin^{2} \left(\left \lfloor x\{x\} \right \rfloor \right)\right) \, dx = \frac{a-(\sqrt{b}+\sqrt{c})}{2}

The equation above holds true for positive integers a , b , c a,b,c . Find a ( b + c 30 ) a(b + c- 30) .


Notations:

  • { } \{ \cdot \} denotes the fractional part function .

  • \lfloor \cdot \rfloor denotes the floor function .

  • sgn ( x ) = { 1 if x < 0 0 if x = 0 1 if x > 0 \text{sgn}(x) = \begin{cases} \begin{array} {l l } -1 & \text{ if }x<0 \\ 0 & \text{ if }x=0 \\ 1 & \text{ if }x>0 \\ \end{array} \end{cases} denotes the sign function .


The answer is 1729.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 26, 2017

We note that, for x [ 7 , 9 ] x \in [7,9] , x { x } \lfloor x \{x\}\rfloor are integers having the range of [ 0 , x ] [0,\lfloor x \rfloor] (see figure above) and that sin 2 ( x { x } ) 0 \sin^2 (\lfloor x \{x\}\rfloor) \ge 0 , therefore, sgn ( sin 2 ( x { x } ) ) = { 0 , x { x } = 0 1 , x { x } > 0 \text{sgn}\left(\sin^2 (\lfloor x \{x\}\rfloor)\right) = \begin{cases} 0, & \lfloor x \{x\}\rfloor = 0 \\ 1, & \lfloor x \{x\}\rfloor > 0 \end{cases} .

We note that for x [ k , k + 1 ) x \in [k,k+1) , where k = 7 , 8 k = 7, 8 , there is an x k 1 x_{k1} such x { x } 1 \lfloor x \{x\}\rfloor \ge 1 for x x k 1 x \ge x_{k1} . Then the integral I k = k k + 1 sgn ( sin 2 ( x { x } ) ) d x \displaystyle I_k = \int_k^{k+1} \text{sgn}\left(\sin^2 (\lfloor x \{x\}\rfloor)\right) dx is the area when x { x } 1 \lfloor x \{x\}\rfloor \ge 1 (the blue region in figure) or I k = 1 × ( k + 1 x k 1 ) = x + 1 x k 1 = 1 { x k 1 } I_k = 1 \times (k+1-x_{k1}) = \lfloor x \rfloor + 1 - x_{k1} = 1-\left \{x_{k1} \right \} . Now { x k 1 } \left \{x_{k1} \right\} is given by:

x { x } 1 ( x + { x } ) { x } 1 ( k + { x } ) { x } 1 { x } 2 + k { x } 1 0 { x k 1 } = ( k 2 + 4 ) k 2 Note that 0 { x k 1 } < 1 { x 71 } = 53 7 2 { x 81 } = 68 8 2 \begin{aligned} x \{x\} & \ge 1 \\ (\lfloor x \rfloor + \{x\}) \{x\} & \ge 1 \\ (k + \{x\}) \{x\} & \ge 1 \\ \{x\}^2 + k\{x\} - 1 & \ge 0 \\ \implies \{x_{k1}\} & = \frac {\sqrt{(k^2+4)}-k}2 & \small \color{#3D99F6} \text{Note that } 0 \le \{x_{k1}\} < 1 \\ \{x_{71}\} & = \frac {\sqrt{53}-7}2 \\ \{x_{81}\} & = \frac {\sqrt{68}-8}2 \end{aligned} )

Now, we have:

I = 7 9 sgn ( sin 2 ( x { x } ) ) d x = I 7 + I 8 = 1 { x 71 } + 1 { x 81 } = 2 53 7 2 68 8 2 = 19 ( 53 + 68 ) 2 \begin{aligned} I & = \int_7^9 \text{sgn}\left(\sin^2 (\lfloor x \{x\}\rfloor)\right) dx \\ & = I_7 + I_8 \\ & = 1- \{x_{71}\} + 1- \{x_{81}\} \\ & = 2 - \frac {\sqrt{53}-7}2 - \frac {\sqrt{68}-8}2 \\ & = \frac {19 - (\sqrt{53} + \sqrt{68})}2 \end{aligned}

a × ( b + c 30 ) = 1729 \implies a \times (b+c-30) = \boxed{1729}

A lucid explanation and the graph makes all the difference

Thanks,sir,for posting this.

Rohith M.Athreya - 4 years, 1 month ago

Log in to reply

I am glad that you like the solution. Yes, it is much easy to explain with a graph. I purposely took time to prepare it.

Chew-Seong Cheong - 4 years, 1 month ago

Log in to reply

Sir,which graphing device do you use?The one I use doesn't have provision of plotting floor,ceiling and other such piecewise function.

Rohith M.Athreya - 4 years, 1 month ago

Log in to reply

@Rohith M.Athreya I used Microsoft Excel spreadsheet. Just figured out how.

Chew-Seong Cheong - 4 years, 1 month ago

Log in to reply

@Chew-Seong Cheong Wow,yes! It has all those functions I was missing!!

Thank you sooo much!!

Rohith M.Athreya - 4 years, 1 month ago
Aakash Khandelwal
Apr 26, 2017

Even answer of this problem is framed beautifully

Yes, a product of palindromes

19 × 91 = 1729 19 \times 91=1729

Rohith M.Athreya - 4 years, 1 month ago

Log in to reply

Not only that 1729 is famous for Ramanujan.

Kushal Bose - 4 years, 1 month ago

Log in to reply

But, of course

Rohith M.Athreya - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...