A geometry problem by A Former Brilliant Member

Geometry Level 3

Find the number of integral values of k k for which the equation 7 cos x + 5 sin x = 2 k + 1 7 \cos x + 5 \sin x = 2k +1 has a solution.

6 7 1 No solution 2 8

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
Sep 30, 2016

Multiply and divide by 7 2 + 5 2 = 74 Let t = 74 8.602 t ( 7 t cos x + 5 t sin x ) = 2 k + 1 Let α = sin 1 ( 7 t ) t sin ( x + α ) = 2 k + 1 x + α = sin 1 ( 2 k + 1 t ) 1 2 k + 1 t 1 1 2 ( t + 1 ) k 1 2 ( t 1 ) k [ 4.801 , 3.801 ] k = 4 , 3 , 2 , 1 , 0 , 1 , 2 , 3 8 possible values of k \text{Multiply and divide by } \sqrt{7^2+5^2} = \sqrt{74} \\ \text{Let } \color{#3D99F6}{t}=\sqrt{74} \approx 8.602 \\ \color{#3D99F6}{t}\left( \dfrac{7}{\color{#3D99F6}{t}}\cos{x}+\dfrac{5}{\color{#3D99F6}{t}}\sin{x} \right) = 2k+1 \\ \text{Let } \alpha = \sin^{-1}{\left( \dfrac{7}{\color{#3D99F6}{t}} \right) } \\ \color{#3D99F6}{t}\sin(x+\alpha)=2k+1 \\ x+\alpha = \sin^{-1}{\left(\dfrac{2k+1}{\color{#3D99F6}{t}} \right)} \\ \implies -1 \le \dfrac{2k+1}{\color{#3D99F6}{t}} \le 1 \implies -\dfrac{1}{2}\left( \color{#3D99F6}{t}+1 \right)\le k \le \dfrac{1}{2}\left( \color{#3D99F6}{t}-1\right) \\ k \in \left[-4.801,3.801\right] \\ k=-4,-3,-2,-1,0,1,2,3 \\ \boxed{8}\text{ possible values of k }

Another easier way is to use Cauchy Schwarz Inequality.

A Former Brilliant Member - 4 years, 8 months ago

Log in to reply

Please Post your Solution :) .

Sabhrant Sachan - 4 years, 8 months ago

Log in to reply

7 cos ( x ) + 5 sin ( x ) 7 2 + 5 2 cos 2 ( x ) + sin 2 ( x ) = 74 7\cos(x) + 5\sin(x) \le \sqrt{7^2+5^2}\sqrt{\cos^2(x)+\sin^2(x)} = \sqrt{74}

Multiply the equation by 1 -1 and you get:

74 7 cos ( x ) 5 sin ( x ) = 7 cos ( x + π ) + 5 sin ( x + π ) -\sqrt{74} \le -7\cos(x) - 5\sin(x) = 7\cos(x+\pi) + 5\sin(x+\pi)

Hence, for all x x , we have 74 7 cos ( x ) + 5 sin ( x ) 74 -\sqrt{74} \le 7\cos(x) + 5\sin(x) \le \sqrt{74}

Ariel Gershon - 4 years, 8 months ago

Log in to reply

@Ariel Gershon Exactly!(+1)

A Former Brilliant Member - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...