An algebra problem by abhishek alva

Algebra Level 3

If x = log a b c x=\log_ a bc , y = log b c a y=\log_b ca and z = log c a b z=\log_c ab , then find x y z x y z xyz-x-y-z .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ayush G Rai
Jun 21, 2016

We can re-write the problem as a x = b c , b y = c a , c z = a b . a^x=bc,b^y=ca,c^z=ab.
Multiply all these equations.We get a x . b y . c z = a 2 . b 2 . c 2 . a^x.b^y.c^z=a^2.b^2.c^2.
So we can clearly see that x = y = z = 2. x=y=z=2.
Therefore x y z x y z = 8 2 2 2 = 2 . xyz-x-y-z=8-2-2-2=\boxed 2.


why do we have keep a=b=c

abhishek alva - 4 years, 11 months ago

Its wrong. Its true for all a,b,c within domain making, x,y,z variable

Prince Loomba - 4 years, 9 months ago

well this was just to get the problem solved faster in olympiads

Ayush G Rai - 4 years, 9 months ago

Ok 2 3 × 3 2 = 2 x × 3 y 2^{3}×3^{2}=2^{x}×3^{y} find the solution then

Prince Loomba - 4 years, 9 months ago

Log in to reply

According to you x=3 and y=2, right?

Prince Loomba - 4 years, 9 months ago

Log in to reply

yup it is.

Ayush G Rai - 4 years, 9 months ago

Log in to reply

@Ayush G Rai No more solutions?

Prince Loomba - 4 years, 9 months ago
Hung Woei Neoh
Jun 22, 2016

x = log a b c = log a b + log a c y = log b c a = log a c a log a b = log a c + log a a log a b = 1 + log a c log a b z = log c a b = log a a b log a c = log a a + log a b log a c = 1 + log a b log a c x=\log_a bc = \log_a b+\log_a c\\ y=\log_b ca = \dfrac{\log_a ca}{\log_a b} = \dfrac{\log_a c + \log_a a}{\log_a b} = \dfrac{1+\log_a c}{\log_a b}\\ z=\log_c ab = \dfrac{\log_a ab}{\log_a c} = \dfrac{\log_a a + \log_a b}{\log_a c} = \dfrac{1+\log_a b}{\log_a c}

To simplify things, we let p = log a b p=\log_a b and q = log a c q=\log_a c . This gives

x = p + q y = 1 + q p z = 1 + p q x=p+q\\ y=\dfrac{1+q}{p}\\ z=\dfrac{1+p}{q}

x y z x y z = ( p + q ) ( 1 + q p ) ( 1 + p q ) ( p + q ) 1 + q p 1 + p q = ( p + q ) ( 1 + p ) ( 1 + q ) p q p q ( p + q ) p q q ( 1 + q ) p q p ( 1 + p ) p q = ( p + q ) ( 1 + p + q + p q ) p 2 q p q 2 q q 2 p p 2 p q = p + q + p 2 + p q + p q + q 2 + p 2 q + p q 2 p 2 q p q 2 q q 2 p p 2 p q = 2 p q p q = 2 xyz-x-y-z\\ =(p+q)\left(\dfrac{1+q}{p}\right)\left(\dfrac{1+p}{q}\right) - (p+q) - \dfrac{1+q}{p} - \dfrac{1+p}{q}\\ =\dfrac{(p+q)(1+p)(1+q)}{pq} - \dfrac{pq(p+q)}{pq} -\dfrac{q(1+q)}{pq} - \dfrac{p(1+p)}{pq}\\ =\dfrac{(p+q)(1+p+q+pq) - p^2q-pq^2 - q - q^2 - p - p^2}{pq}\\ =\dfrac{\color{#E81990}{p}\color{teal}{+q}\color{#D61F06}{+p^2}\color{#20A900}{+pq+pq}\color{#EC7300}{+q^2}\color{#3D99F6}{+p^2q}\color{#69047E}{+pq^2}\color{#3D99F6}{ - p^2q}\color{#69047E}{-pq^2}\color{teal}{-q}\color{#EC7300}{-q^2}\color{#E81990}{-p}\color{#D61F06}{-p^2}}{\color{#20A900}{pq}}\\ =\dfrac{\color{#20A900}{2pq}}{\color{#20A900}{pq}}\\ =\boxed{2}

Same solution. Just use base changing property

Prince Loomba - 4 years, 9 months ago
Prince Loomba
Sep 10, 2016

Simplify xyz, you will clearly see xyz=x+y+z+2, just use basic base exchange property of log to expand.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...