Evaluating Symmetrical Expressions

Algebra Level 4

( x 3 y 3 ) 2 ( x y ) 3 + ( y 3 z 3 ) 2 ( y z ) 3 + ( z 3 x 3 ) 2 ( z x ) 3 \dfrac{ ( x^3 - y^3) ^2 } { (xy)^3 } + \dfrac{ ( y^3 - z^3 )^2 } { (yz)^3} + \dfrac{ ( z^3 - x^3 ) ^2 } { ( zx)^3 } If x 3 + y 3 + z 3 = 0 x^3 + y^3 + z^3 = 0 and x y z 0 xyz \neq 0 , what is the value of the expression above.


The answer is -9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Rui-Xian Siew
Aug 23, 2016

Starting with given condition, ( x 3 + y 3 + z 3 ) ( x 6 + y 6 + z 6 ) = 0 x 9 + y 9 + z 9 + x 3 ( y 3 + z 3 ) + y 3 ( x 3 + z 3 ) + z 3 ( y 3 + x 3 ) = 0 x 9 + y 9 + z 9 = [ x 3 ( y 3 + z 3 ) + y 3 ( x 3 + z 3 ) + z 3 ( y 3 + x 3 ) ] L e t x 9 + y 9 + z 9 ( x y z ) 3 = A S = ( x 3 y 3 ) 2 ( x y ) 3 + ( x 3 z 3 ) 2 ( x z ) 3 + ( z 3 y 3 ) 2 ( z y ) 3 S = ( x 6 + y 6 ) 2 ( x y ) 3 ( x y ) 3 + ( x 6 + z 6 ) 2 ( x z ) 3 ( x z ) 3 + ( z 6 + y 6 ) 2 ( z y ) 3 ( z y ) 3 S = z 3 ( x 6 + y 6 ) + x 3 ( z 6 + y 6 ) + y 3 ( x 6 + z 6 ) ( x y z ) 3 6 S = A 6 S = z 3 ( x 6 + y 6 + 2 ( x y ) 3 2 ( x y ) 3 ) + x 3 ( z 6 + y 6 + 2 ( z y ) 3 2 ( z y ) 3 ) + y 3 ( x 6 + z 6 + 2 ( x z ) 3 2 ( x z ) 3 ) ( x y z ) 3 6 S = z 6 ( z 3 ) + x 6 ( x 3 ) + y 6 ( y 3 ) ( x y z ) 3 12 S = A 12 A 12 = A 6 A = 3 S = 3 12 = 9 ({ x }^{ 3 }+{ y }^{ 3 }+{ z }^{ 3 })({ x }^{ 6 }+{ y }^{ 6 }+{ z }^{ 6 })=0\\ \Rightarrow { x }^{ 9 }+{ y }^{ 9 }+{ z }^{ 9 }+{ x }^{ 3 }({ y }^{ 3 }+{ z }^{ 3 })+{ y }^{ 3 }({ x }^{ 3 }+{ z }^{ 3 })+{ z }^{ 3 }({ y }^{ 3 }+{ x }^{ 3 })=0\\ \Rightarrow { x }^{ 9 }+{ y }^{ 9 }+{ z }^{ 9 }=-\left[ { x }^{ 3 }({ y }^{ 3 }+{ z }^{ 3 })+{ y }^{ 3 }({ x }^{ 3 }+{ z }^{ 3 })+{ z }^{ 3 }({ y }^{ 3 }+{ x }^{ 3 }) \right] \\ Let\quad \frac { { x }^{ 9 }+{ y }^{ 9 }+{ z }^{ 9 } }{ { (xyz) }^{ 3 } } =A\\ S=\frac { { ({ x }^{ 3 }-{ y }^{ 3 }) }^{ 2 } }{ { (xy) }^{ 3 } } +\frac { { ({ x }^{ 3 }-{ z }^{ 3 }) }^{ 2 } }{ { (xz) }^{ 3 } } +\frac { { ({ z }^{ 3 }-{ y }^{ 3 }) }^{ 2 } }{ { (zy) }^{ 3 } } \\ S=\frac { { ({ x }^{ 6 }+{ y }^{ 6 }) }-2{ (xy) }^{ 3 } }{ { (xy) }^{ 3 } } +\frac { { ({ x }^{ 6 }+{ z }^{ 6 }) }-2{ (xz) }^{ 3 } }{ { (xz) }^{ 3 } } +\frac { { ({ z }^{ 6 }+{ y }^{ 6 }) }-2{ (zy) }^{ 3 } }{ { (zy) }^{ 3 } } \\ S=\frac { { { z }^{ 3 }({ x }^{ 6 }+{ y }^{ 6 }) }+x^{ 3 }({ z }^{ 6 }+{ y }^{ 6 })+{ y }^{ 3 }({ x }^{ 6 }+z^{ 6 }) }{ { (xyz) }^{ 3 } } -6\quad \Rightarrow S=-A-6\\ S=\frac { { { z }^{ 3 }({ x }^{ 6 }+{ y }^{ 6 }+2{ (xy) }^{ 3 }-2{ (xy) }^{ 3 }) }+x^{ 3 }({ z }^{ 6 }+{ y }^{ 6 }+2{ (zy) }^{ 3 }-2{ (zy) }^{ 3 })+{ y }^{ 3 }({ x }^{ 6 }+z^{ 6 }+2{ (xz) }^{ 3 }-2{ (xz) }^{ 3 }) }{ { (xyz) }^{ 3 } } -6\\ S=\frac { { { z }^{ 6 }({ z }^{ 3 }) }+x^{ 6 }({ x }^{ 3 })+{ y }^{ 6 }({ y }^{ 3 }) }{ { (xyz) }^{ 3 } } -12\quad \Rightarrow S=A-12\\ A-12=-A-6\quad \Rightarrow A=3\\ \therefore \quad S=3-12=-9

Moderator note:

Nicely done. Can you generalize the problem, replacing 3 with n n (but leaving the squares as they are)?

If n is odd integer, given x n + y n + z n = 0 a n d x y z 0 ( x n + y n + z n ) ( x 2 n + y 2 n + z 2 n ) = 0 x 3 n + y 3 n + z 3 n + x n ( y n + z n ) + y n ( x n + z n ) + z n ( y n + x n ) = 0 x 3 n + y 3 n + z 3 n = [ x n ( y n + z n ) + y n ( x n + z n ) + z n ( y n + x n ) ] L e t x 3 n + y 3 n + z 3 n ( x y z ) n = A S = ( x n y n ) 2 ( x y ) n + ( x n z n ) 2 ( x z ) n + ( z n y n ) 2 ( z y ) n S = ( x 2 n + y 2 n ) 2 ( x y ) n ( x y ) n + ( x 2 n + z 2 n ) 2 ( x z ) n ( x z ) n + ( z 2 n + y 2 n ) 2 ( z y ) n ( z y ) n S = z n ( x 2 n + y 2 n ) + x n ( z 2 n + y 2 n ) + y n ( x 2 n + z 2 n ) ( x y z ) n 6 S = A 6 S = z n ( x 2 n + y 2 n + 2 ( x y ) n 2 ( x y ) n ) + x n ( z 2 n + y 2 n + 2 ( z y ) n 2 ( z y ) n ) + y n ( x 2 n + z 2 n + 2 ( x z ) n 2 ( x z ) n ) ( x y z ) n 6 S = z n ( z 2 n ) + x n ( x 2 n ) + y n ( y 2 n ) ( x y z ) n 12 S = A 12 2 S = 18 S = 9 ( x n y n ) 2 ( x y ) n + ( x n z n ) 2 ( x z ) n + ( z n y n ) 2 ( z y ) n = 9 { x }^{ n }+{ y }^{ n }+{ z }^{ n }=0\quad and\quad xyz\neq 0\quad \\ ({ x }^{ n }+{ y }^{ n }+{ z }^{ n })({ x }^{ 2n }+{ y }^{ 2n }+{ z }^{ 2n })=0\\ \Rightarrow { x }^{ 3n }+{ y }^{ 3n }+{ z }^{ 3n }+{ x }^{ n }({ y }^{ n }+{ z }^{ n })+{ y }^{ n }({ x }^{ n }+{ z }^{ n })+{ z }^{ n }({ y }^{ n }+{ x }^{ n })=0\\ \Rightarrow { x }^{ 3n }+{ y }^{ 3n }+{ z }^{ 3n }=-\left[ { x }^{ n }({ y }^{ n }+{ z }^{ n })+{ y }^{ n }({ x }^{ n }+{ z }^{ n })+{ z }^{ n }({ y }^{ n }+{ x }^{ n }) \right] \\ Let\quad \frac { { x }^{ 3n }+{ y }^{ 3n }+{ z }^{ 3n } }{ { (xyz) }^{ n } } =A\\ S=\frac { { ({ x }^{ n }-{ y }^{ n }) }^{ 2 } }{ { (xy) }^{ n } } +\frac { { ({ x }^{ n }-{ z }^{ n }) }^{ 2 } }{ { (xz) }^{ n } } +\frac { { ({ z }^{ n }-{ y }^{ n }) }^{ 2 } }{ { (zy) }^{ n } } \\ S=\frac { { ({ x }^{ 2n }+{ y }^{ 2n }) }-2{ (xy) }^{ n } }{ { (xy) }^{ n } } +\frac { { ({ x }^{ 2n }+{ z }^{ 2n }) }-2{ (xz) }^{ n } }{ { (xz) }^{ n } } +\frac { { ({ z }^{ 2n }+{ y }^{ 2n }) }-2{ (zy) }^{ n } }{ { (zy) }^{ n } } \\ S=\frac { { { z }^{ n }({ x }^{ 2n }+{ y }^{ 2n }) }+x^{ n }({ z }^{ 2n }+{ y }^{ 2n })+{ y }^{ n }({ x }^{ 2n }+z^{ 2n }) }{ { (xyz) }^{ n } } -6\quad \Rightarrow S=-A-6\\ S=\frac { { { z }^{ n }({ x }^{ 2n }+{ y }^{ 2n }+2{ (xy) }^{ n }-2{ (xy) }^{ n }) }+x^{ n }({ z }^{ 2n }+{ y }^{ 2n }+2{ (zy) }^{ n }-2{ (zy) }^{ n })+{ y }^{ n }({ x }^{ 2n }+z^{ 2n }+2{ (xz) }^{ n }-2{ (xz) }^{ n }) }{ { (xyz) }^{ n } } -6\\ S=\frac { { { z }^{ n }({ z }^{ 2n }) }+x^{ n }({ x }^{ 2n })+{ y }^{ n }({ y }^{ 2n }) }{ { (xyz) }^{ n } } -12\quad \Rightarrow S=A-12\\ 2S=-18\quad \Rightarrow S=-9\\ \therefore \quad \frac { { ({ x }^{ n }-{ y }^{ n }) }^{ 2 } }{ { (xy) }^{ n } } +\frac { { ({ x }^{ n }-{ z }^{ n }) }^{ 2 } }{ { (xz) }^{ n } } +\frac { { ({ z }^{ n }-{ y }^{ n }) }^{ 2 } }{ { (zy) }^{ n } } =-9

Rui-Xian Siew - 4 years, 9 months ago

Log in to reply

How about n n even?

Did you need to use the fact that n n is odd? If so, you should explain where / why.

Calvin Lin Staff - 4 years, 9 months ago

Log in to reply

In the real domain, n with even parity would imply that each of x,y and z equals zero. However in the complex domain, solutions do exist. Here is a brief generalization: x , y , z ( x n y n ) 2 x n y n = ( x n + y n ) 2 4 x n y n x n y n = z 2 n x n y n 4 = 12 + 1 x n y n z n z 3 n = 12 + 3 = 9 ( a + b + c = 0 a 3 + b 3 + c 3 = 3 a b c , p u t t i n g a = x n , b = y n , c = z n ) \sum _{ x,y,z }^{ }{ \frac { { ({ x }^{ n }-{ y }^{ n }) }^{ 2 } }{ { x }^{ n }{ y }^{ n } } } =\quad \sum \frac { { ({ x }^{ n }+{ y }^{ n }) }^{ 2 }-4{ x }^{ n }{ y }^{ n } }{ { x }^{ n}{ y }^{ n } } =\quad \sum { \frac { { z }^{ 2n } }{ { x }^{ n }{ y }^{ n } } } -4\quad =\quad -12+\quad \frac { 1 }{ { x }^{ n }{ y }^{ n }{ z }^{ n } } \sum { { z }^{ 3n } } =\quad -12+3\quad =-9\quad \\ (\quad \because \quad a+b+c=0\quad \Rightarrow { a }^{ 3 }{ +b }^{ 3 }+{ c }^{ 3 }=3abc,\quad putting\quad a={ x }^{ n },b={ y }^{ n },c={ z }^{ n })

Aditya Dhawan - 4 years, 9 months ago

Log in to reply

@Aditya Dhawan There was no restriction that the numbers had to be real.

Yes. That approach is what I envisioned, and is a clearer presentation of Rui's solution. Can you add that as a separate​ solution? Thanks!

Calvin Lin Staff - 4 years, 9 months ago

x 3 + z 3 = y 3 x 3 + y 3 = z 3 y 3 + z 3 = x 3 x^{3}+z^{3}=-y^{3} \\ x^{3}+y^{3}=-z^{3} \\ y^{3}+z^{3}=-x^{3}

( x 3 y 3 ) 2 ( x y ) 3 + ( y 3 z 3 ) 2 ( y z ) 3 + ( z 3 x 3 ) 2 ( z x ) 3 \dfrac{ ( x^3 - y^3) ^2 } { (xy)^3 } + \dfrac{ ( y^3 - z^3 )^2 } { (yz)^3} + \dfrac{ ( z^3 - x^3 ) ^2 } { ( zx)^3 }

= z 3 ( x 6 + y 6 2 x 3 y 3 ) + x 3 ( y 6 + z 6 2 y 3 z 3 ) + y 3 ( x 6 + z 6 2 x 3 z 3 ) x 3 y 3 z 3 = z 3 x 6 + z 3 y 6 2 x 3 y 3 z 3 + x 3 y 6 + x 3 z 6 2 x 3 y 3 z 3 + y 3 x 6 + y 3 z 6 2 x 3 y 3 z 3 x 3 y 3 z 3 = x 3 y 6 + y 3 x 6 + x 3 z 6 + z 3 x 6 + y 3 z 6 + z 3 y 6 6 x 3 y 3 z 3 ) x 3 y 3 z 3 = x 3 y 3 ( x 3 + y 3 ) + x 3 z 3 ( x 3 + z 3 ) + y 3 z 3 ( y 3 + z 3 ) 6 x 3 y 3 z 3 x 3 y 3 z 3 = x 3 y 3 ( z 3 ) + x 3 z 3 ( y 3 ) + y 3 z 3 ( x 3 ) 6 x 3 y 3 z 3 x 3 y 3 z 3 = 9 x 3 y 3 z 3 x 3 y 3 z 3 = 9 = \dfrac{ z^{3}(x^{6}+y^{6}-2x^{3}y^{3})+x^{3}(y^{6}+z^{6}-2y^{3}z^{3})+y^{3}(x^{6}+z^{6}-2x^{3}z^{3}) } { x^{3}y^{3}z^{3} } \\ = \dfrac{z^{3}x^{6}+z^{3}y^{6}-2x^{3}y^{3}z^{3}+x^{3}y^{6}+x^{3}z^{6}-2x^{3}y^{3}z^{3}+y^{3}x^{6}+y^{3}z^{6}-2x^{3}y^{3}z^{3}}{x^{3}y^{3}z^{3}} \\ = \dfrac{x^{3}y^{6}+y^{3}x^{6}+x^{3}z^{6}+z^{3}x^{6}+y^{3}z^{6}+z^{3}y^{6}-6x^{3}y^{3}z^{3})}{x^{3}y^{3}z^{3}} \\ = \dfrac{x^{3}y^{3}(x^{3}+y^{3})+x^{3}z^{3}(x^{3}+z^{3})+y^{3}z^{3}(y^{3}+z^{3})-6x^{3}y^{3}z^{3}}{x^{3}y^{3}z^{3}} \\ = \dfrac{x^{3}y^{3}(-z^{3})+x^{3}z^{3}(-y^{3})+y^{3}z^{3}(-x^{3})-6x^{3}y^{3}z^{3}}{x^{3}y^{3}z^{3}} \\ = \dfrac{-9x^{3}y^{3}z^{3}}{x^{3}y^{3}z^{3}} \\=-9

Solved the same way too!

tom engelsman - 4 years, 9 months ago
Aditya Dhawan
Aug 24, 2016

Here is a brief generalization: x , y , z ( x n y n ) 2 x n y n = ( x n + y n ) 2 4 x n y n x n y n = z 2 n x n y n 4 = 12 + 1 x n y n z n z 3 n = 12 + 3 = 9 ( a + b + c = 0 a 3 + b 3 + c 3 = 3 a b c , p u t t i n g a = x n , b = y n , c = z n ) \sum _{ x,y,z }^{ }{ \frac { { ({ x }^{ n }-{ y }^{ n }) }^{ 2 } }{ { x }^{ n }{ y }^{ n } } } =\quad \sum \frac { { ({ x }^{ n }+{ y }^{ n }) }^{ 2 }-4{ x }^{ n }{ y }^{ n } }{ { x }^{ n}{ y }^{ n } } =\quad \sum { \frac { { z }^{ 2n } }{ { x }^{ n }{ y }^{ n } } } -4\quad =\quad -12+\quad \frac { 1 }{ { x }^{ n }{ y }^{ n }{ z }^{ n } } \sum { { z }^{ 3n } } =\quad -12+3\quad =-9\quad \\ (\quad \because \quad a+b+c=0\quad \Rightarrow { a }^{ 3 }{ +b }^{ 3 }+{ c }^{ 3 }=3abc,\quad putting\quad a={ x }^{ n },b={ y }^{ n },c={ z }^{ n })

Kushal Bose
Aug 24, 2016

I think there is no real exists that satisfy the given condition.

I have used complex number.

I have considered x = 1 , y 3 = ω , z 3 = ω 2 x=1,y^3=\omega,z^3=\omega^2 .

After putting this I have found answer is 9 9

x = 1 , y = 1 , z = 2 3 x = -1, y = -1, z = \sqrt[3]{2} is a real solution to the conditions.

You have shown it for a specific instance. For a rigorous solution, explain why it would hold true for all possible cases.

Calvin Lin Staff - 4 years, 9 months ago
Sparsh Setia
Nov 28, 2016

it was a very easy question

For posting of solutions, please restrict it to actual solutions of the problem.

You can post this as a comment instead.

Calvin Lin Staff - 4 years, 6 months ago
Rishav Koirala
Sep 14, 2016

I have one that's a bit cleaner- Noting that the expressions are similar but for the variables interchanged, take the first one and simplify it- ( x 3 y 3 ) 2 ( x y ) 3 = ( x 2 y y 2 x ) 2 x y = x 4 y 2 2 x y + y 4 x 2 x y \large \frac{(x^3-y^3)^2}{(xy)^3} = \frac{(\frac{x^2}{y}-\frac{y^2}{x})^2}{xy} = \frac{\frac{x^4}{y^2} -2xy + \frac{y^4}{x^2}}{xy} , which can then be written as x 3 y 3 + y 3 x 3 2 \frac{x^3}{y^3} + \frac{y^3}{x^3} -2 Now, the remaining two expressions can also be written in a similar fashion, so the whole expression becomes x 3 y 3 + z 3 y 3 + y 3 x 3 + z 3 x 3 + x 3 z 3 + y 3 z 3 6 \frac{x^3}{y^3} + \frac{z^3}{y^3}+\frac{y^3}{x^3}+\frac{z^3}{x^3}+\frac{x^3}{z^3}+\frac{y^3}{z^3} -6 Now grouping together the terms with the same denominator and using the fact that x 3 + y 3 + z 3 = 0 x^3+y^3+z^3 =0 , the answer is 1 1 1 6 = 9 -1-1-1-6 = \boxed{-9}

Rajen Kapur
Aug 26, 2016

At the outset the problem can be simplified to evaluate ( p q ) 2 p q + ( q r ) 2 q r + ( r p ) 2 r p \frac{(p-q)^2}{pq}+\frac {(q-r)^2}{qr} +\frac {(r-p)^2}{rp} where p + q + r = 0 p+q+r=0 and p q r 0 pqr\neq 0 with definition of new variables as p = x 3 , q = y 3 , r = z 3 p=x^3,q=y^3,r=z^3 , knowing that x y z 0 x 3 y 3 z 3 0. xyz\neq 0 \implies x^3y^3z^3 \neq 0.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...