( x y ) 3 ( x 3 − y 3 ) 2 + ( y z ) 3 ( y 3 − z 3 ) 2 + ( z x ) 3 ( z 3 − x 3 ) 2 If x 3 + y 3 + z 3 = 0 and x y z = 0 , what is the value of the expression above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nicely done. Can you generalize the problem, replacing 3 with n (but leaving the squares as they are)?
If n is odd integer, given x n + y n + z n = 0 a n d x y z = 0 ( x n + y n + z n ) ( x 2 n + y 2 n + z 2 n ) = 0 ⇒ x 3 n + y 3 n + z 3 n + x n ( y n + z n ) + y n ( x n + z n ) + z n ( y n + x n ) = 0 ⇒ x 3 n + y 3 n + z 3 n = − [ x n ( y n + z n ) + y n ( x n + z n ) + z n ( y n + x n ) ] L e t ( x y z ) n x 3 n + y 3 n + z 3 n = A S = ( x y ) n ( x n − y n ) 2 + ( x z ) n ( x n − z n ) 2 + ( z y ) n ( z n − y n ) 2 S = ( x y ) n ( x 2 n + y 2 n ) − 2 ( x y ) n + ( x z ) n ( x 2 n + z 2 n ) − 2 ( x z ) n + ( z y ) n ( z 2 n + y 2 n ) − 2 ( z y ) n S = ( x y z ) n z n ( x 2 n + y 2 n ) + x n ( z 2 n + y 2 n ) + y n ( x 2 n + z 2 n ) − 6 ⇒ S = − A − 6 S = ( x y z ) n z n ( x 2 n + y 2 n + 2 ( x y ) n − 2 ( x y ) n ) + x n ( z 2 n + y 2 n + 2 ( z y ) n − 2 ( z y ) n ) + y n ( x 2 n + z 2 n + 2 ( x z ) n − 2 ( x z ) n ) − 6 S = ( x y z ) n z n ( z 2 n ) + x n ( x 2 n ) + y n ( y 2 n ) − 1 2 ⇒ S = A − 1 2 2 S = − 1 8 ⇒ S = − 9 ∴ ( x y ) n ( x n − y n ) 2 + ( x z ) n ( x n − z n ) 2 + ( z y ) n ( z n − y n ) 2 = − 9
Log in to reply
How about n even?
Did you need to use the fact that n is odd? If so, you should explain where / why.
Log in to reply
In the real domain, n with even parity would imply that each of x,y and z equals zero. However in the complex domain, solutions do exist. Here is a brief generalization: ∑ x , y , z x n y n ( x n − y n ) 2 = ∑ x n y n ( x n + y n ) 2 − 4 x n y n = ∑ x n y n z 2 n − 4 = − 1 2 + x n y n z n 1 ∑ z 3 n = − 1 2 + 3 = − 9 ( ∵ a + b + c = 0 ⇒ a 3 + b 3 + c 3 = 3 a b c , p u t t i n g a = x n , b = y n , c = z n )
Log in to reply
@Aditya Dhawan – There was no restriction that the numbers had to be real.
Yes. That approach is what I envisioned, and is a clearer presentation of Rui's solution. Can you add that as a separate solution? Thanks!
x 3 + z 3 = − y 3 x 3 + y 3 = − z 3 y 3 + z 3 = − x 3
( x y ) 3 ( x 3 − y 3 ) 2 + ( y z ) 3 ( y 3 − z 3 ) 2 + ( z x ) 3 ( z 3 − x 3 ) 2
= x 3 y 3 z 3 z 3 ( x 6 + y 6 − 2 x 3 y 3 ) + x 3 ( y 6 + z 6 − 2 y 3 z 3 ) + y 3 ( x 6 + z 6 − 2 x 3 z 3 ) = x 3 y 3 z 3 z 3 x 6 + z 3 y 6 − 2 x 3 y 3 z 3 + x 3 y 6 + x 3 z 6 − 2 x 3 y 3 z 3 + y 3 x 6 + y 3 z 6 − 2 x 3 y 3 z 3 = x 3 y 3 z 3 x 3 y 6 + y 3 x 6 + x 3 z 6 + z 3 x 6 + y 3 z 6 + z 3 y 6 − 6 x 3 y 3 z 3 ) = x 3 y 3 z 3 x 3 y 3 ( x 3 + y 3 ) + x 3 z 3 ( x 3 + z 3 ) + y 3 z 3 ( y 3 + z 3 ) − 6 x 3 y 3 z 3 = x 3 y 3 z 3 x 3 y 3 ( − z 3 ) + x 3 z 3 ( − y 3 ) + y 3 z 3 ( − x 3 ) − 6 x 3 y 3 z 3 = x 3 y 3 z 3 − 9 x 3 y 3 z 3 = − 9
Solved the same way too!
Here is a brief generalization: ∑ x , y , z x n y n ( x n − y n ) 2 = ∑ x n y n ( x n + y n ) 2 − 4 x n y n = ∑ x n y n z 2 n − 4 = − 1 2 + x n y n z n 1 ∑ z 3 n = − 1 2 + 3 = − 9 ( ∵ a + b + c = 0 ⇒ a 3 + b 3 + c 3 = 3 a b c , p u t t i n g a = x n , b = y n , c = z n )
I think there is no real exists that satisfy the given condition.
I have used complex number.
I have considered x = 1 , y 3 = ω , z 3 = ω 2 .
After putting this I have found answer is 9
it was a very easy question
I have one that's a bit cleaner- Noting that the expressions are similar but for the variables interchanged, take the first one and simplify it- ( x y ) 3 ( x 3 − y 3 ) 2 = x y ( y x 2 − x y 2 ) 2 = x y y 2 x 4 − 2 x y + x 2 y 4 , which can then be written as y 3 x 3 + x 3 y 3 − 2 Now, the remaining two expressions can also be written in a similar fashion, so the whole expression becomes y 3 x 3 + y 3 z 3 + x 3 y 3 + x 3 z 3 + z 3 x 3 + z 3 y 3 − 6 Now grouping together the terms with the same denominator and using the fact that x 3 + y 3 + z 3 = 0 , the answer is − 1 − 1 − 1 − 6 = − 9
At the outset the problem can be simplified to evaluate p q ( p − q ) 2 + q r ( q − r ) 2 + r p ( r − p ) 2 where p + q + r = 0 and p q r = 0 with definition of new variables as p = x 3 , q = y 3 , r = z 3 , knowing that x y z = 0 ⟹ x 3 y 3 z 3 = 0 .
Problem Loading...
Note Loading...
Set Loading...
Starting with given condition, ( x 3 + y 3 + z 3 ) ( x 6 + y 6 + z 6 ) = 0 ⇒ x 9 + y 9 + z 9 + x 3 ( y 3 + z 3 ) + y 3 ( x 3 + z 3 ) + z 3 ( y 3 + x 3 ) = 0 ⇒ x 9 + y 9 + z 9 = − [ x 3 ( y 3 + z 3 ) + y 3 ( x 3 + z 3 ) + z 3 ( y 3 + x 3 ) ] L e t ( x y z ) 3 x 9 + y 9 + z 9 = A S = ( x y ) 3 ( x 3 − y 3 ) 2 + ( x z ) 3 ( x 3 − z 3 ) 2 + ( z y ) 3 ( z 3 − y 3 ) 2 S = ( x y ) 3 ( x 6 + y 6 ) − 2 ( x y ) 3 + ( x z ) 3 ( x 6 + z 6 ) − 2 ( x z ) 3 + ( z y ) 3 ( z 6 + y 6 ) − 2 ( z y ) 3 S = ( x y z ) 3 z 3 ( x 6 + y 6 ) + x 3 ( z 6 + y 6 ) + y 3 ( x 6 + z 6 ) − 6 ⇒ S = − A − 6 S = ( x y z ) 3 z 3 ( x 6 + y 6 + 2 ( x y ) 3 − 2 ( x y ) 3 ) + x 3 ( z 6 + y 6 + 2 ( z y ) 3 − 2 ( z y ) 3 ) + y 3 ( x 6 + z 6 + 2 ( x z ) 3 − 2 ( x z ) 3 ) − 6 S = ( x y z ) 3 z 6 ( z 3 ) + x 6 ( x 3 ) + y 6 ( y 3 ) − 1 2 ⇒ S = A − 1 2 A − 1 2 = − A − 6 ⇒ A = 3 ∴ S = 3 − 1 2 = − 9