The Numerators Diverge Too

Calculus Level 2

It is well known that

e = k = 0 1 k ! = 1 0 ! + 1 1 ! + 1 2 ! + 1 3 ! + e = \sum_{k=0}^\infty \dfrac{1}{k!} = \dfrac{1}{ 0!} + \dfrac{1}{1!} + \dfrac{1}{2!} + \dfrac{1}{3!} + \cdots

What is the value of

k = 0 k + 1 k ! = 1 0 ! + 2 1 ! + 3 2 ! + 4 3 ! + ? \sum_{k=0}^{\infty} \dfrac{ k+1} {k!} = \dfrac{1}{0!} + \dfrac{2}{ 1!} + \dfrac{3}{2!} + \dfrac{ 4}{3!} + \cdots \quad ?

Notation : ! ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .

Bonus : Prove this by just manipulating the terms from the first identity.

( k + 1 ) e (k+1) e 2 e 2e e + 2 e + 2 e 2 e^2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Pi Han Goh
Aug 24, 2016

By the ratio test , we can show that the series in question converges. This is because a n = n + 1 n ! a n + 1 = n + 2 ( n + 1 ) ! a n + 1 a n = n + 2 ( n + 1 ) 2 0 . a_n = \dfrac{n+1}{n!} \; \Leftrightarrow \; a_{n+1} = \dfrac{n+2}{(n+1)!} \; \Rightarrow \; \dfrac{a_{n+1}}{a_n} = \dfrac{n+2}{(n+1)^2} \to 0 \; .

So we can perform arithmetic on the desired series

k = 0 k + 1 k ! k = 0 1 k ! = k = 0 k + 1 1 k ! = k = 0 k k ! = 0 0 ! + k = 1 k k ! = k = 1 1 ( k 1 ) ! = k = 0 1 k ! ( k = 0 k + 1 k ! ) e = e k = 0 k + 1 k ! = 2 e . \begin{aligned} \sum_{k=0}^\infty \dfrac{k+1}{k!} - \sum_{k=0}^\infty \dfrac{1}{k!} &=& \sum_{k=0}^\infty \dfrac{k+1-1}{k!} = \sum_{k=0}^\infty \dfrac{k}{k!} = \dfrac{0}{0!} + \sum_{k=1}^\infty \dfrac k{k!} = \sum_{k=1}^\infty \dfrac 1{(k-1)!} = \sum_{k=0}^\infty \dfrac 1{k!} \\ \left(\sum_{k=0}^\infty \dfrac{k+1}{k!}\right) - e &=& e \\ \sum_{k=0}^\infty \dfrac{k+1}{k!} &=& \boxed{2e} \; . \end{aligned}

Michael Mendrin
Aug 22, 2016

Okay, the summation can be first split

k = 0 k + 1 k ! = k = 0 1 ( k 1 ) ! + k = 0 1 k ! = 1 ( 0 1 ) ! + 2 k = 0 1 k ! \displaystyle \sum _{ k=0 }^{ \infty }{ \dfrac { k+1 }{ k! } } =\displaystyle \sum _{ k=0 }^{ \infty }{ \dfrac { 1 }{ (k-1)! } } +\displaystyle \sum _{ k=0 }^{ \infty }{ \dfrac { 1 }{ k! } } =\dfrac { 1 }{ (0-1)! } +2\displaystyle \sum _{ k=0 }^{ \infty }{ \dfrac { 1 }{ k! } }

Since 1 ( 0 1 ) ! = 0 \dfrac { 1 }{ (0-1)! }=0 , the answer immediately follows But this is the non-trivial hiccup part. In a way, by summing the series expansion for e e with itself shifted over by one term, we can prove that this hiccup is true.

Deleted my previous solution but thought of one now. So, I am using the comment here.

e x = k = 0 x k k ! x e x = k = 0 x k + 1 k ! d d x x e x = d d x k = 0 x k + 1 k ! e x + x e x = k = 0 ( k + 1 ) x k k ! Putting x = 1 2 e = k = 0 k + 1 k ! \begin{aligned} e^x & = \sum_{k=0}^\infty \frac {x^k}{k!} \\ xe^x & = \sum_{k=0}^\infty \frac {x^{k+1}}{k!} \\ \frac d{dx} xe^x & = \frac d{dx} \sum_{k=0}^\infty \frac {x^{k+1}}{k!} \\ e^x + xe^x & = \sum_{k=0}^\infty \frac {(k+1)x^k}{k!} & \small \color{#3D99F6}{\text{Putting }x=1} \\ 2e & = \sum_{k=0}^\infty \frac {k+1}{k!} \end{aligned}

Chew-Seong Cheong - 4 years, 9 months ago

Hm, only issue is that it's not ideal to work with 1 ( 1 ) ! \frac{ 1}{ (-1)!} . Instead, we have 0 0 ! \frac{0}{0!} , which is clearly 0.

Calvin Lin Staff - 4 years, 9 months ago

Log in to reply

Calvin, the quicker way to prove the value of your summation, using your suggestion, " just manipulating the terms from the first identity", is to note that

1 n ! + 1 ( n + 1 ) ! = n + 2 ( n + 1 ) ! \dfrac { 1 }{ n! } +\dfrac { 1 }{ (n+1)! } =\dfrac { n+2 }{ (n+1)! }

but, hey, I was having fun----I'm trying to say that this would be a neat way to prove that the following has to be true necessarily

1 ( 0 1 ) ! = 0 \dfrac { 1 }{ (0-1)! }=0

Addendum: Here goes the proper proof of your summation

k = 0 1 k ! = e \displaystyle \sum _{ k=0 }^{ \infty }{ \dfrac { 1 }{ k! } } =e

1 + k = 0 1 ( k + 1 ) ! = e 1+\displaystyle \sum _{ k=0 }^{ \infty }{ \dfrac { 1 }{ (k+1)! } } =e

Hence

1 + k = 0 1 k ! + k = 0 1 ( k + 1 ) ! = 1 + k = 0 k + 2 ( k + 1 ) ! = k = 0 k + 1 k ! = 2 e 1+\displaystyle \sum _{ k=0 }^{ \infty }{ \dfrac { 1 }{ k! } + \displaystyle \sum _{ k=0 }^{ \infty }{ \dfrac { 1 }{ (k+1)! } } } =1+\displaystyle \sum _{ k=0 }^{ \infty }{ \dfrac { k+2 }{ (k+1)! } = } \displaystyle \sum _{ k=0 }^{ \infty }{ \dfrac { k+1 }{ k! } } =2e

.

Michael Mendrin - 4 years, 9 months ago

Could we simply ignore the negative factorial terms ? Don't they have some meaning ?

Anurag Pandey - 4 years, 9 months ago

Log in to reply

That's always a bad idea, "ignoring things because they don't make sense".

Michael Mendrin - 4 years, 8 months ago

Log in to reply

@Michael Mendrin The how should I think around it ?

Anurag Pandey - 4 years, 8 months ago

Log in to reply

@Anurag Pandey Like my first answer to Calvin Lin. 1 ( 1 ) ! \dfrac{1}{\left(-1\right)!} really does work out to 0 0 , and THEN you can ignore it!

Here's the plot of the function 1 x ! \dfrac{1}{x!}

Michael Mendrin - 4 years, 8 months ago

k = 0 k + 1 k ! = k = 0 k k ! + k = 0 1 k ! \displaystyle \sum_{k=0}^{\infty} \frac{k+1}{k!} =\displaystyle \sum_{k=0}^{\infty}\frac{k}{k!} +\displaystyle \sum_{k=0}^{\infty} \frac{1}{k!} = 0 1 ! + k = 1 1 ( k 1 ) ! + e = k = 0 1 k ! + e = 2 e =\frac{0}{1!}+\displaystyle \sum_{k=1}^{\infty} \frac{1}{(k-1)!} +e=\displaystyle \sum_{k=0}^{\infty} \frac{1}{k!} +e=2e

Mark Recio
Sep 26, 2016

Since

e = 1 0 ! + 1 1 ! + 1 2 ! + . . . e = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + ...

= 1 1 ! + 2 2 ! + 3 3 ! + . . . \frac{1}{1!} + \frac{2}{2!} + \frac{3}{3!} + ...

= 1 0 ! + 2 1 ! + 3 2 ! + . . . ( 1 0 ! + 1 1 ! + 1 2 ! + . . . ) \frac{1}{0!} + \frac{2}{1!} + \frac{3}{2!} + ... - ( \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + ... )

=> 1 0 ! + 2 1 ! + 3 2 ! + . . . = e + e = 2 e \frac{1}{0!} + \frac{2}{1!} + \frac{3}{2!} + ... = e + e = 2e .

Shaun Lee
Sep 7, 2016

k + 1 k ! \frac{k+1}{k!} =(k+1)÷k!= k k ! \frac{k}{k!} +e= 1 ( k 1 ) ! \frac{1}{(k-1)!} +e=2e

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...