Jacobsthal-Geometric Series

Algebra Level 5

J n = { 0 if n = 0 ; 1 if n = 1 ; J n 1 + 2 J n 2 if n > 1. \text{J}_{n}=\begin{cases} 0 \quad & \text{if}~n=0; \\ 1 \quad & \text{if} ~ n=1; \\ \text{J}_{n-1}+2\text{J}_{n-2} \quad & \text{if}~n>1.\end{cases}

Jacobsthal Numbers are defined by the recurrence relation as described above. Evaluate: n = 0 J n 1 0 n + 1 . \displaystyle \sum_{n=0}^{\infty} \dfrac{\text{J}_{n}}{10^{n+1}} \; .

If the value of the above expression is in the form A 1 A^{-1} , find A A .


Inspiration


The answer is 88.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Ayush Verma
Apr 9, 2016

J 0 = 0 , J 1 = 1 & J n = J n 1 + 2 J n 2 J n 10 n + 1 = 1 10 . J n 1 10 n + 2 100 . J n 2 10 n 1 n = 2 J n 10 n + 1 = 1 10 n = 2 J n 1 10 n + 2 100 n = 2 J n 2 10 n 1 A J 1 10 2 J 0 10 = 1 10 ( A J 0 10 ) + 2 100 A A 1 100 0 = 1 10 ( A 0 ) + 2 100 A 88 100 A = 1 100 A 1 = 88 { J }_{ 0 }=0{ \quad ,\quad J }_{ 1 }=1\\ \\ \& \quad { J }_{ n }={ J }_{ n-1 }+2{ J }_{ n-2 }\quad \Rightarrow \cfrac { { J }_{ n } }{ { 10 }^{ n+1 } } =\cfrac { 1 }{ 10 } .\cfrac { { J }_{ n-1 } }{ { 10 }^{ n } } +\cfrac { 2 }{ 100 } .\cfrac { { J }_{ n-2 } }{ { 10 }^{ n-1 } } \\ \\ \Rightarrow \sum _{ n=2 }^{ \infty }{ \cfrac { { J }_{ n } }{ { 10 }^{ n+1 } } } =\cfrac { 1 }{ 10 } \sum _{ n=2 }^{ \infty }{ \cfrac { { J }_{ n-1 } }{ { 10 }^{ n } } } +\cfrac { 2 }{ 100 } \sum _{ n=2 }^{ \infty }{ \cfrac { { J }_{ n-2 } }{ { 10 }^{ n-1 } } } \\ \\ \Rightarrow A-\cfrac { { J }_{ 1 } }{ { 10 }^{ 2 } } -\cfrac { { J }_{ 0 } }{ { 10 } } =\cfrac { 1 }{ 10 } \left( A-\cfrac { { J }_{ 0 } }{ { 10 } } \right) +\cfrac { 2 }{ 100 } A\\ \\ \Rightarrow A-\cfrac { 1 }{ 100 } -0=\cfrac { 1 }{ 10 } \left( A-0 \right) +\cfrac { 2 }{ 100 } A\\ \\ \Rightarrow \cfrac { 88 }{ 100 } A=\cfrac { 1 }{ 100 } \\ \\ \Rightarrow { A }^{ -1 }=88

The best way is to use difference equation . That process is more classic. But well done.

Prithwish Mukherjee - 2 years, 3 months ago
Rohit Udaiwal
Apr 8, 2016

Relevant wiki: Recurrence Relations

S = n = 0 J n 1 0 n + 1 = 0 10 + 1 1 0 2 + 1 1 0 3 + 3 1 0 4 + 5 1 0 5 + 11 1 0 6 + 21 1 0 8 + S 10 = 1 1 0 3 + 1 1 0 4 + 3 1 0 5 + 5 1 0 6 + 11 1 0 7 + 21 1 0 8 + S + S 10 = 1 1 0 2 + 2 1 0 3 + 4 1 0 4 + 11 S = 1 10 + 2 1 0 2 + 4 1 0 3 + [ Infinite GP ] = 1 10 1 2 10 = 1 8 S = 1 88 \begin{aligned} \mathbf{S}= & \sum_{n=0}^{\infty} \dfrac{\text{J}_{n}}{10^{n+1}} \\ = &\dfrac{0}{10}+ \dfrac{1}{10^2} +\dfrac{1}{10^3}+\dfrac{3}{10^4}+\dfrac{5}{10^5}+\dfrac{11}{10^6} +\dfrac{21}{10^8}+\ldots \\ \implies \dfrac{\mathbf{S}}{10}= & \dfrac{1}{10^3} +\dfrac{1}{10^4}+\dfrac{3}{10^5}+\dfrac{5}{10^6}+\dfrac{11}{10^7} +\dfrac{21}{10^8}+\ldots \\ \implies \mathbf{S}+\dfrac{\mathbf{S}}{10}= & \dfrac{1}{10^2}+\dfrac{2}{10^3}+\dfrac{4}{10^4}+\ldots \\ 11\mathbf{S}= & \dfrac{1}{10}+\dfrac{2}{10^2}+\dfrac{4}{10^3}+\ldots \quad \quad [\text{Infinite GP}] \\ = & \dfrac{\frac{1}{10}}{1-\frac{2}{10}}=\dfrac{1}{8} \\ \therefore \mathbf{S}= & \displaystyle \boxed{\dfrac{1}{88}} \end{aligned}


Bonus :Show that 3 J n + ( 1 ) n = 2 n 3\text{J}_{n}+(-1)^n=2^n ,where J n \text{J}_n denotes the n th n^{\text{th}} Jacobsthal Number.

On solving the given recurrence, we get :- J n = 1 3 ( 2 n ( 1 ) n ) J_n \,=\, \frac{1}{3} \left(2^{n} \,-\,(-1)^{n}\right) . It can easily be seen that 3 J n + ( 1 ) n = 2 n \color{#D61F06}{3 \cdot J_n \,+\, (-1)^{n} \,=\, 2^{n}} .

Aditya Sky - 5 years, 2 months ago

Nice problem! Thanks for citing my problem as an inspiration :)

Manuel Kahayon - 5 years, 2 months ago

Log in to reply

Your problem was very cool.Congratulations,you solved it :)!

Rohit Udaiwal - 5 years, 2 months ago

Log in to reply

Thanks! Although, sadly, it was a ripoff of a similar problem, but the series was defined as a 1 = a 2 = a 3 = 1 , a n = a n 1 + a n 2 + a n 3 a_1=a_2=a_3=1, a_n = a_{n-1}+ a_{n-2}+a_{n-3} for n 4 n \geq 4

Manuel Kahayon - 5 years, 2 months ago

Log in to reply

@Manuel Kahayon Oh,that's painful.Nevertheless, could you link me with the problem?

Rohit Udaiwal - 5 years, 2 months ago

Log in to reply

@Rohit Udaiwal No links. It was a written problem on our training test paper...

Manuel Kahayon - 5 years, 2 months ago

Log in to reply

@Manuel Kahayon Ohk.!BTW I like your problems a lot.Please keep posting :)

Rohit Udaiwal - 5 years, 2 months ago

Log in to reply

@Rohit Udaiwal Thanks! (This is an extension of the comment since 1-word comments are not allowed)

Manuel Kahayon - 5 years, 2 months ago

Log in to reply

@Manuel Kahayon I really think one-word comments should be allowed here. @Andrew Ellinor

Rohit Udaiwal - 5 years, 2 months ago

Log in to reply

@Rohit Udaiwal Then take it up with me in the Brilliant Lounge :P

Andrew Ellinor - 5 years, 2 months ago
展豪 張
Apr 10, 2016

Let f ( x ) = J 0 + J 1 x + J 2 x 2 + f(x)=J_0+J_1x+J_2x^2+\cdots .
From the recurrence relation we have f ( x ) ( 1 x 2 x 2 ) = x f(x)(1-x-2x^2)=x
i.e. f ( x ) = x 1 x 2 x 2 f(x)=\dfrac x{1-x-2x^2}
The sum = 1 10 f ( 1 10 ) = 1 88 =\dfrac 1{10}f(\dfrac 1{10})=\dfrac 1{88}
A = 88 A=88



Shourya Pandey
Apr 9, 2016

The link just gives away the formula J n = 1 3 ( 2 n ( 1 ) n ) J_{n} = \frac {1}{3}(2^{n} - (-1)^{n})

Thanks,I've removed that link.

Rohit Udaiwal - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...