An easy one for you

Algebra Level 2

If the roots of the quadratic equation x 2 p x + q = 0 x^{2} - px + q = 0 differ by unity,then

q 2 = 4 p + 1 q^{2} = 4p + 1 p 2 = 4 q + 1 p^{2} = 4q+ 1 q 2 = 4 p 1 q^{2} = 4p - 1 p 2 = 4 q 1 p^{2} = 4q - 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Ankith A Das
Mar 9, 2015

l e t t h e r o o t s o f t h e e q u a t i o n x 2 p x + q = 0 b e α a n d β g i v e n t h a t α β = 1 ( c o n s i d e r i n g α > β ) W e c a n e x p r e s s α β i n t h e f o r m ( α + β ) 2 4 α β α β = ( α + β ) 2 4 α β 1 = ( α + β ) 2 4 α β I n a q u a d r a t i c e q u a t i o n a x 2 + b x + c = 0 α + β = b a a n d α β = c a 1 = ( ( p ) 1 ) 2 4 ( q 1 ) 1 = p 2 4 q p 2 = 4 q + 1 let\quad the\quad roots\quad of\quad the\quad equation\quad { x }^{ 2 }-px+q=0\quad be\quad \alpha \quad and\quad \beta \\ given\quad that\quad \alpha -\beta =1\quad (considering\quad \alpha >\beta )\\ We\quad can\quad express\quad \alpha -\beta \quad in\quad the\quad form\quad \sqrt { { \left( \alpha +\beta \right) }^{ 2 }-4\alpha \beta } \\ \Rightarrow \quad \alpha -\beta =\sqrt { { \left( \alpha +\beta \right) }^{ 2 }-4\alpha \beta } \\ \Rightarrow 1={ \left( \alpha +\beta \right) }^{ 2 }-4\alpha \beta \\ In\quad a\quad quadratic\quad equation\quad a{ x }^{ 2 }+bx+c=0\\ \alpha +\beta =\dfrac { -b }{ a } \quad and\quad \alpha \beta =\dfrac { c }{ a } \quad \\ \Rightarrow 1={ \left( \dfrac { -\left( -p \right) }{ 1 } \right) }^{ 2 }-4 \left(\dfrac { q }{ 1 }\right) \\ \Rightarrow 1={ p }^{ 2 }-4q\\ \Rightarrow { p }^{ 2 }=4q+1

The third last line could have been more clear....anyways nice solution.....upvoted!!

Sakanksha Deo - 6 years, 3 months ago

Log in to reply

Thank you ! I have also improved the solution.

Ankith A Das - 6 years, 3 months ago

Log in to reply

It needs more editing..... 4 ( q 1 ) 4 (\frac{q}{1})

Sakanksha Deo - 6 years, 3 months ago

Log in to reply

@Sakanksha Deo Sorry I left that part. If there are anymore changes that I have to make. Please inform me. Thanks

Ankith A Das - 6 years, 3 months ago

Log in to reply

@Ankith A Das It looks gud now.... :)

Sakanksha Deo - 6 years, 3 months ago
Pranav Madhu
Apr 1, 2015

Lorenzo Moulin
Apr 16, 2015

Pranjal Jain
Mar 10, 2015

x 2 3 x + 2 = 0 x^2-3x+2=0 satisfies.

3 2 = 2 × 4 + 1 3^2=2×4+1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...