An integral for the new year

Calculus Level 3

0 d x ( 1 + x 2 ) ( 1 + x 2016 ) \large \int_0^\infty\dfrac{dx}{(1+x^2)(1+x^{2016})}

If the value of the above integral is equal to π A , \dfrac{\pi}{A}, find A A .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Andrew Ellinor
Jan 15, 2016

The 1 + x 2 1 + x^2 lends itself to the easy substitution x = tan θ . x = \tan \theta. Upon doing so, this transforms the integral accordingly:

0 d x ( 1 + x 2 ) ( 1 + x 2016 ) 0 π 2 d θ 1 + tan 2016 θ \int_0^\infty\dfrac{dx}{(1+x^2)(1+x^{2016})} \longrightarrow \int_0^{\frac{\pi}{2}} \dfrac{d\theta}{1 + \tan^{2016}\theta}

From here, we'll break the integral up into two intervals, like so:

0 π 4 d θ 1 + tan 2016 θ + π 4 π 2 d θ 1 + tan 2016 θ \int_0^{\frac{\pi}{4}} \dfrac{d\theta}{1 + \tan^{2016}\theta} + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \dfrac{d\theta}{1 + \tan^{2016}\theta}

Then, we'll write the second integral in terms of cotangent, rather than tangent: 0 π 4 d θ 1 + tan 2016 θ + π 4 π 2 cot 2016 θ d θ 1 + cot 2016 θ \int_0^{\frac{\pi}{4}} \dfrac{d\theta}{1 + \tan^{2016}\theta} + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \dfrac{\cot^{2016} \theta \, d\theta}{1 + \cot^{2016}\theta}

Lastly, we'll make one more substitution for the second integral, namely θ = π 2 β \theta = \frac{\pi}{2} - \beta , thus transforming the integral into

π 4 π 2 cot 2016 θ d θ 1 + cot 2016 θ π 4 0 cot 2016 ( π 2 β ) d β 1 + cot 2016 ( π 2 β ) = 0 π 4 tan 2016 ( β ) d β 1 + tan 2016 ( β ) \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \dfrac{\cot^{2016} \theta \, d\theta}{1 + \cot^{2016}\theta} \longrightarrow \int_{\frac{\pi}{4}}^{0} \dfrac{- \cot^{2016}(\frac{\pi}{2} - \beta) \, d\beta}{1 + \cot^{2016}(\frac{\pi}{2} - \beta)} = \int_{0}^\frac{\pi}{4} \dfrac{ \tan^{2016}(\beta) \, d\beta}{1 + \tan^{2016}(\beta)}

This result can replace the second integral to give us the equivalent expression:

0 π 4 d θ 1 + tan 2016 θ + 0 π 4 tan 2016 ( θ ) d θ 1 + tan 2016 ( θ ) = 0 π 4 1 d θ = π 4 \int_0^{\frac{\pi}{4}} \dfrac{d\theta}{1 + \tan^{2016}\theta} + \int_{0}^\frac{\pi}{4} \dfrac{ \tan^{2016}(\theta) \, d\theta}{1 + \tan^{2016}(\theta)} = \int_{0}^{\frac{\pi}{4}} 1 d\theta = \frac{\pi}{4} \quad \square

Interesting use of cotangent! My solution was a little cleaner towards the end, using the Bounds Trick (substituting u = a + b x u=a+b-x ) after reaching 0 π 2 d θ 1 + tan 2016 θ . \displaystyle\int_0^\frac{\pi}{2}\dfrac{d\theta}{1+\tan^{2016}\theta}.

Expect to see this integral (or just the one with tan a θ \tan^a\theta ) in the Integration Tricks wiki collab!

Trevor B. - 5 years, 5 months ago

Log in to reply

Haha, yeah I thought my method might be slightly convoluted, but it was fun to do. I don't use the a + b x a + b - x sub enough.

Andrew Ellinor - 5 years, 5 months ago

Log in to reply

I think it's a lot less popular than it deserves credit for. Even on my school's math team, it's called "Unnamed Integral Trick #2" (if you're wondering, #1 is the integral of e x ( f ( x ) + f ( x ) e^x(f(x)+f'(x) ).

Trevor B. - 5 years, 5 months ago

Log in to reply

@Trevor B. It isn't exactly unnamed if you call it "Unnamed Integral Trick #2"

A Former Brilliant Member - 5 years, 5 months ago

Log in to reply

@A Former Brilliant Member That's the joke :P

Trevor B. - 5 years, 5 months ago

Log in to reply

@Trevor B. I got that xD. This integral technique is by far my favorite after a a f ( x ) d x = 0 a f ( x ) d x + 0 a f ( x ) d x \displaystyle \int_{-a}^{a}f(x)dx = \int_{0}^{a} f(x)dx + \int_{0}^{a}f(-x)dx

A Former Brilliant Member - 5 years, 5 months ago

\infty here can be quite a small figure for very high accuracy.

Lu Chee Ket - 5 years, 5 months ago

Awesome solution to an awesome problem :)

Nihar Mahajan - 5 years, 4 months ago
Noureldin Yosri
Jan 16, 2016

well I took a slightly different approach I = 0 d x ( x 2 + 1 ) ( x 2016 + 1 ) ( 1 ) I = \int_0^\infty \frac{dx}{(x^2 + 1)(x^{2016} + 1)} \Longrightarrow (1) set x = 1/y then d x = d y y 2 dx = \frac{-dy}{y^2} and the new bounds are y = lim x 0 + 1 x = y = \lim_{x \rightarrow 0^+} \frac{1}{x}= \infty and y = lim x 1 x = 0 y = \lim_{x \rightarrow \infty} \frac{1}{x}= 0

so the integral becomes I = 0 d y y 2 ( y 2 + 1 ) ( y 2016 + 1 ) y 2 × y 2016 = 0 y 2016 d y ( y 2 + 1 ) ( y 2016 + 1 ) = 0 x 2016 d x ( x 2 + 1 ) ( x 2016 + 1 ) ( 2 ) I = \int_\infty^0 \frac{\frac{-dy}{y^2}}{\frac{(y^2 + 1)(y^{2016} + 1)}{y^2 \times y^{2016}}} = \int_0^\infty \frac{y^{2016} dy}{(y^2 + 1)(y^{2016} + 1)} = \int_0^\infty \frac{x^{2016} dx}{(x^2 + 1)(x^{2016} + 1)} \Longrightarrow (2) now add (1) and (2) 2 × I = 0 d x 1 + x 2 = t a n 1 t a n 1 0 = π 2 I = π 4 \Longrightarrow 2 \times I = \int_0^\infty \frac{dx}{1 + x^2} = tan^{-1} \infty - tan^{-1} 0 = \frac{\pi}{2} \Longrightarrow I = \frac{\pi}{4}

I used the same approach :)

ibrahim abdullah - 5 years, 5 months ago
Trevor B.
Jan 17, 2016

We can substitute u = tan θ , u=\tan\theta, motivated by how there would be a sec 2 θ d θ \sec^2\theta\text{ }d\theta in the numerator and a sec 2 θ \sec^2\theta in the denominator. This will transform the integral into the following: 0 π 2 d θ 1 + tan 2016 θ \int_0^\frac{\pi}{2}\frac{d\theta}{1+\tan^{2016}\theta} Let's examine the integral I = 0 π 2 d θ 1 + tan c θ . I=\displaystyle\int_0^\frac{\pi}{2}\frac{d\theta}{1+\tan^c\theta}. We can make use of the following identity: a b f ( x ) d x = a b f ( a + b x ) d x \int_a^bf(x)\text{ }dx=\int_a^bf(a+b-x)\text{ }dx We find the following. 0 π 2 d θ 1 + tan c θ = 0 π 2 d θ 1 + cot c θ \int_0^\frac{\pi}{2}\frac{d\theta}{1+\tan^c\theta}=\int_0^\frac{\pi}{2}\frac{d\theta}{1+\cot^c\theta} Summing these, we find this. 2 I = 0 π 2 ( 1 1 + tan c θ + 1 1 + cot c θ ) d θ = 0 π 2 ( 1 1 + tan c θ + tan c θ tan c θ + 1 ) d θ = 0 π 2 1 + tan c θ 1 + tan c θ d θ 2I=\int_0^\frac{\pi}{2}\left(\frac{1}{1+\tan^c\theta}+\frac{1}{1+\cot^c\theta}\right)d\theta=\int_0^\frac{\pi}{2}\left(\frac{1}{1+\tan^c\theta}+\frac{\tan^c\theta}{\tan^c\theta+1}\right)d\theta=\int_0^\frac{\pi}{2}\frac{1+\tan^c\theta}{1+\tan^c\theta}d\theta

This simplifies to 2 I 2I being equal to 0 π 2 1 d θ . \displaystyle\int_0^\frac{\pi}{2}1\text{ }d\theta. Obviously, 2 I = π 2 , 2I=\frac{\pi}{2}, so I = π 4 I=\frac{\pi}{4} and A = 4 . A=\boxed{4}.

Moderator note:

Nice application of f ( x ) = f ( a + b x ) \int f(x) = \int f(a+b - x ) to simplify the expression further.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...