An integral with the floor function

Calculus Level 4

1 x x 3 d x = 3 a + π b 12 + π 2 c 24 1 \large \int_1^\infty\frac{\lfloor x\rfloor}{x^3}\, dx = \frac{3}{a}+\frac{\pi b}{12}+\frac{\pi^2 c}{24}-1

The equation above holds true for where a , b a,b and c c are integers a a , b b and c c . Compute the value of c a + b c^{a+b} .

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Pi Han Goh
Aug 16, 2016

Relevant wiki: Integration of Piecewise Functions

Let n n be an integer . If n x < n + 1 n \leq x < n+1 , then x = n \lfloor x \rfloor = n . And we denote I I as the integral in question. We have

I = 1 x x 3 d x = 1 2 1 x 3 d x + 2 3 1 x 3 d x + 3 4 1 x 3 d x + + n n + 1 1 x 3 d x + = m = 1 m m + 1 m x 3 d x = m = 1 m [ 1 2 x 2 ] m m + 1 = m = 1 1 2 [ m ( m + 1 ) 2 + m m 2 ] = 1 2 m = 1 [ 1 m 1 m + 1 + 1 ( m + 1 ) 2 ] = 1 2 m = 1 ( 1 m 1 m + 1 ) = 1 + 1 2 m = 1 1 ( m + 1 ) 2 = π 2 / 6 1 = π 2 12 . \begin{aligned} I &=& \int_1^\infty \dfrac{\lfloor x \rfloor }{x^3} \, dx \\ &=& \int_1^2 \dfrac1{x^3} \, dx + \int_2^3 \dfrac1{x^3} \, dx + \int_3^4 \dfrac1{x^3} \, dx + \cdots + \int_n^{n+1} \dfrac1{x^3} \, dx + \cdots \\ &=& \sum_{m=1}^\infty \int_m^{m+1} \dfrac m{x^3} \, dx \\ &=& \sum_{m=1}^\infty m \cdot \left [-\dfrac1{2x^2} \right ]_m^{m+1} \\ &=& \sum_{m=1}^\infty \dfrac 12 \cdot \left [-\dfrac m{(m+1)^2} + \dfrac m{m^2} \right ] \\ &=& \dfrac12 \sum_{m=1}^\infty \cdot \left [\dfrac1m -\dfrac1{m+1} + \dfrac1{(m+1)^2} \right ] \\ &=& \dfrac12 \; \underbrace{ \sum_{m=1}^\infty \left( \dfrac1m - \dfrac1{m+1} \right)}_{ = 1 } + \dfrac12 \; \underbrace{ \sum_{m=1}^\infty \dfrac1{(m+1)^2} }_{= \pi^2 /6 - 1} = \dfrac{\pi^2}{12} . \\ \end{aligned}

We can evaluate the two series in the penultimate step above by noticing that the first series is a telescoping series , and the second series can be expressed as ζ ( 2 ) 1 \zeta(2) - 1 , where ζ ( ) \zeta(\cdot) denotes the Riemann Zeta function .

Now, we want to express I = π 2 12 I = \dfrac{\pi^2}{12} in the form of 3 a + π b 12 + π 2 c 24 1 \dfrac 3a + \dfrac{\pi b}{12} + \dfrac{\pi^2 c}{24 } - 1 .

Notice that π 2 12 = ( 1 1 ) + π 0 12 + π 2 2 24 \dfrac{\pi^2}{12} = (\color{#20A900}1 - 1) + \dfrac{\pi \cdot \color{#20A900}0}{12} + \dfrac{\pi^2 \cdot \color{#20A900}2}{24} . So 3 a = 1 , b = 0 , c = 2 c a + b = 2 0 + 3 = 8 \dfrac3a = 1, b = 0, c = 2 \Rightarrow c^{a+b} = 2^{0+3} = \boxed8 .

Well done!

Diego G - 4 years, 10 months ago

Log in to reply

[ This message has been retracted ]

Pi Han Goh - 4 years, 10 months ago

Log in to reply

Sure! I'd be glad to :)

Diego G - 4 years, 10 months ago

Log in to reply

@Diego G Go here . Let me know once you registered and logged in to it.

Pi Han Goh - 4 years, 10 months ago

In your solution after noting that,

I = k = 1 k × k k + 1 1 x 3 d x \sum_{k=1}^{\infty}k \times \int_k^{k+1} \frac{1}{ x^{3}}dx

We can rewrite that as,

I = k = 1 k 1 x 3 d x \sum_{k=1}^{\infty}\int_k^{\infty} \frac{1}{ x^{3}}dx

which is 1 2 × ζ ( 2 ) \frac{1}{2} \times \zeta \big(2\big)

Vitthal Yellambalse - 4 years, 8 months ago
Chew-Seong Cheong
Apr 28, 2018

I = 1 x x 3 d x = k = 1 k k + 1 k x 3 d x = k = 1 k 2 x 2 k k + 1 = 1 2 k = 1 ( k k 2 k ( k + 1 ) 2 ) = 1 2 k = 1 ( 1 k k + 1 1 ( k + 1 ) 2 ) = 1 2 k = 1 ( 1 k 1 k + 1 + 1 ( k + 1 ) 2 ) = 1 2 ( 1 1 ) + 1 2 k = 1 1 ( k + 1 ) 2 = 1 2 + 1 2 k = 1 1 k 2 1 2 = π 2 12 \begin{aligned} I & = \int_1^\infty \frac {\lfloor x \rfloor}{x^3} dx \\ & = \sum_{k=1}^\infty \int_k^{k+1} \frac k{x^3} dx \\ & = \sum_{k=1}^\infty - \frac k{2x^2} \bigg|_k^{k+1} \\ & = \frac 12 \sum_{k=1}^\infty \left(\frac k{k^2} - \frac k{(k+1)^2} \right) \\ & = \frac 12 \sum_{k=1}^\infty \left(\frac 1k - \frac {k+1-1}{(k+1)^2} \right) \\ & = \frac 12 \sum_{k=1}^\infty \left({\color{#3D99F6}\frac 1k - \frac 1{k+1}} + \frac 1{(k+1)^2} \right) \\ & = \frac 12 {\color{#3D99F6}\left(\frac 11\right)} + \frac 12 \sum_{k=1}^\infty \frac 1{(k+1)^2} \\ & = \frac 12 + {\color{#3D99F6}\frac 12 \sum_{k=1}^\infty \frac 1{k^2}} - \frac 12 \\ & = \color{#3D99F6} \frac {\pi^2}{12} \end{aligned}

Therefore, 3 a + π b 12 + π 2 c 24 1 = 3 3 + π 0 12 + π 2 2 24 1 \dfrac 3{\color{#3D99F6}a} + \dfrac {\pi \color{#3D99F6}b}{12} + \dfrac {\pi^2\color{#3D99F6}c}{24} - 1 = \dfrac 3{\color{#3D99F6}3} + \dfrac {\pi\cdot \color{#3D99F6}0}{12} + \dfrac {\pi^2\cdot \color{#3D99F6}2}{24} - 1 c a + b = 2 3 + 0 = 8 \implies c^{a+b} = 2^{3+0} = \boxed{8} .

I = 1 x x 3 d x = k = 1 0 1 k ( k + x ) 3 d x = k = 1 k 2 [ 1 ( k + 1 ) 2 1 k 2 ] = k = 1 k 2 [ 2 k 1 ( k + 1 ) 2 k 2 ] = 1 2 k = 1 [ 2 ( k + 1 ) 2 + 1 ( k + 1 ) 2 k ] = 1 2 [ 2 ( π 2 / 6 1 ) + 2 π 2 / 6 ] = π 2 / 12 = 3 3 + 2 π 2 24 1 \begin{aligned} I&=\int\limits_1^\infty\frac{\lfloor x \rfloor}{x^3}\,\mathrm dx=\sum\limits_{k=1}^\infty\int\limits_0^1 \frac{k}{(k+x)^3}\,\mathrm d x=-\sum\limits_{k=1}^\infty \frac k2\left[\frac{1}{(k+1)^2}-\frac{1}{k^2}\right]\\ &=-\sum\limits_{k=1}^\infty \frac k2\left[\frac{-2k-1}{(k+1)^2 k^2}\right]=\frac 12\sum\limits_{k=1}^\infty\left[\frac{2}{(k+1)^2}+\frac{1}{(k+1)^2 k}\right]\\ &=\frac{1}{2}\left[2\left(\pi^2/6-1\right)+2-\pi^2/6\right]=\pi^2/12\\ &=\frac 33+\frac{2\pi^2}{24}-1 \end{aligned}

So c a + b = 2 3 + 0 = 8 c^{a+b}=2^{3+0}=\boxed{8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...