A calculus problem by Ryan Broder

Calculus Level 5

f ( x ) = lim n + k = 1 n cos x 2 k f(x) = \lim_{n \to +\infty} \ \prod_{k=1}^{n} \cos{\frac{x}{2^k}} lim a + x = a a f ( x ) = N \lim_{a \to +\infty} \sum_{x=-a}^{a} f(x)=N What is 100 N \lfloor {100N} \rfloor ?


The answer is 314.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pratik Shastri
Oct 29, 2014

f ( x ) = lim n cos ( x 2 n ) cos ( x 2 n 1 ) cos ( x 2 ) f(x)=\lim_{n \rightarrow \infty} \cos \left(\dfrac{x}{2^n}\right)\cos \left(\dfrac{x}{2^{n-1}}\right) \cdots \cos \left(\dfrac{x}{2}\right)

Multiply and divide the RHS by sin ( x 2 n ) \sin \left(\dfrac{x}{2^n}\right) and combine the terms starting from the left by using the identity sin 2 θ = 2 sin θ cos θ \sin {2\theta}=2\sin{\theta}\cos{\theta} repeatedly.

Doing this, we get f ( x ) = lim n 1 / 2 n sin ( x / 2 n ) sin x = sin x x \begin{aligned} f(x) &=\lim_{n \rightarrow \infty} \dfrac{1/2^n}{\sin {\left(x/2^n\right)}} \sin {x} \\ &=\dfrac{\sin{x}}{x} \end{aligned}

Now, we need to find N = n = sin n n N=\sum_{n=-\infty}^{\infty} \dfrac{\sin {n}}{n}

There is a bit of a problem, as sin x x \dfrac{\sin x}{x} is not defined for x = 0 x=0 . But if we take it to be 1 1 , then N = 1 + 2 n = 1 sin n n N=1+2\sum_{n=1}^{\infty} \dfrac{\sin n}{n} since sin ( n ) n = sin n n n I { 0 } \dfrac{\sin (-n)}{-n}=\dfrac{\sin n}{n} \ \ \ \forall \ n \in \mathbb{I}-\{0\}

Now, recall that 1 + x + x 2 + = 1 1 x 1+x+x^2+ \cdots=\dfrac{1}{1-x}

Integrate both sides of the above equality to see that log ( 1 x ) = k = 1 x k k -\log (1-x)=\sum_{k=1}^{\infty} \dfrac{x^k}{k}

Using Euler's formula , N = 1 + 2 ( n = 1 e i n n ) = 1 2 ( { log ( 1 e i ) } ) \begin{aligned} N &=1+2\left(\Im \sum_{n=1}^{\infty} \dfrac{e^{in}}{n}\right)\\ &= 1-2\left(\Im \left\{\log(1-e^i)\right\}\right) \end{aligned}

After using the Euler's formula and some half-angle trigonometric identities, you will find that, 1 e i = 2 sin ( 1 2 ) exp ( i ( 1 π ) 2 ) 1-e^i=2\sin\left(\dfrac{1}{2}\right) \exp\left(\dfrac{i(1-\pi)}{2}\right) Hence, ( { log ( 1 e i ) } ) = 1 π 2 \left(\Im \left\{\log(1-e^i)\right\}\right)=\dfrac{1-\pi}{2} and accordingly, N = π 3.14 N=\pi\approx3.14 So, 100 N = 314 \lfloor 100N \rfloor=\boxed{314}

Note : { z } represents the imaginary part of z . \text{Note :} \ \Im \{z\} \ \text{represents the imaginary part of} \ z.

U Z
Oct 29, 2014

c o s x 2 . c o s x 2 2 . . . . . . . . . . . . . . . . . . c o s x 2 n \huge{cos\frac{x}{2}.cos\frac{x}{2^2} ..................cos\frac{x}{2^{n}}}

c o s π 2 c o s π 2 2 . . . . . . . . . . . . . . . . . . 2 s i n x 2 n c o s x 2 n 2 s i n x 2 n \huge{\frac{cos\frac{\pi}{2}cos\frac{\pi}{2^{2}}..................2sin\frac{x}{2^{n}}cos\frac{x}{2^{n}}}{2sin\frac{x}{2^n}}}

now multiplying and dividing by 2 and applying the formula s i n 2 x = 2 s i n x c o s x sin2x = 2sinx cosx it will go on reducing and thus we get

s i n x 2 n s i n x 2 n \huge{\frac{sinx}{2^{n}sin\frac{x}{2^{n}}}}

l i m n s i n x 2 n s i n x 2 n x 2 n × x 2 n \huge{ lim_{n \to \infty} \frac{sinx}{2^{n}\frac{sin\frac{x}{2^{n}}}{\frac{x}{2^{n}}}\times \frac{x}{2^{n}}}}

thus = s i n x x \huge{= \frac{sinx}{x}}

now we can easily see l i m a + x = a a s i n x x = π lim_{a \to +\infty} \displaystyle \sum_{x = -a}^{a} \frac{sinx}{x} = \pi

thus answer is 314

Please recheck your work. f ( x ) = sin x x f(x) = \dfrac{\sin x}{x} and not cos x x \dfrac{\cos x}{x} .

Pratik Shastri - 6 years, 7 months ago

Log in to reply

oh really sorry a huge mistake

U Z - 6 years, 7 months ago

Log in to reply

Two more errors :

1) The limit in the third last line should be on n n .

2) The limit in the last line should be on a a .

You should also prove why n = sin n n = π \sum_{n=-\infty}^{\infty} \dfrac{\sin n}{n}=\pi

Pratik Shastri - 6 years, 7 months ago

Log in to reply

@Pratik Shastri oh sorry once again I am a man born to do bunch of mistakes thank you

Do you know Aditya Shah(doctor's son) , my friend firsty he was living in Bharuch for better education he went to Vadodara in your school

U Z - 6 years, 7 months ago

Log in to reply

@U Z The tall one? Yes I know him.

PS : My parents are docs too and even I'm tall :P

Pratik Shastri - 6 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...