Angle hunting

Geometry Level 5

The A B P \triangle ABP , B C Q \triangle BCQ and A Q R \triangle AQR satisfy the following:

{ B A P = C A R = 1 5 A B P = C P Q = 3 0 A C R = B C Q = 4 5 \large \begin{cases} \angle BAP = \angle CAR = 15^\circ \\ \angle ABP = \angle CPQ = 30^\circ \\ \angle ACR = \angle BCQ = 45^\circ \end{cases}

Find the largest angle of P Q R \triangle PQR in degrees.


The answer is 75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
Mar 31, 2018

Since the angle sum of a triangle is 180 ° 180° , A P B = 135 ° \angle APB = 135° , A R C = 120 ° \angle ARC = 120° , and B Q C = 105 ° \angle BQC = 105° .

By the law of sines on A P B \triangle APB , A R C \triangle ARC , and B Q C \triangle BQC , A P = sin 30 ° sin 135 ° A B = 2 2 A B AP = \frac{\sin 30°}{\sin 135°}AB = \frac{\sqrt{2}}{2}AB , B P = sin 15 ° sin 135 ° A B = 3 1 2 A B BP = \frac{\sin 15°}{\sin 135°}AB = \frac{\sqrt{3} - 1}{2}AB , A R = sin 45 ° sin 120 ° A C = 6 3 A C AR = \frac{\sin 45°}{\sin 120°}AC = \frac{\sqrt{6}}{3}AC , C R = sin 15 ° sin 120 ° A C = 3 2 6 6 A C CR = \frac{\sin 15°}{\sin 120°}AC = \frac{3\sqrt{2} - \sqrt{6}}{6}AC , B Q = sin 45 ° sin 105 ° B C = 3 1 2 B C BQ = \frac{\sin 45°}{\sin 105°}BC = \frac{\sqrt{3} - 1}{2}BC , and C Q = sin 30 ° sin 105 ° B C = 6 2 2 B C CQ = \frac{\sin 30°}{\sin 105°}BC = \frac{\sqrt{6} - \sqrt{2}}{2}BC .

By the law of cosines on A P R \triangle APR , B P Q \triangle BPQ , and C R Q \triangle CRQ ,

P R 2 = A P 2 + A R 2 2 A P A R cos ( B A C + 30 ° ) PR^2 = AP^2 + AR^2 - 2 \cdot AP \cdot AR \cdot \cos(\angle BAC + 30°)

P Q 2 = B P 2 + B Q 2 2 B P B Q cos ( A B C + 60 ° ) PQ^2 = BP^2 + BQ^2 - 2 \cdot BP \cdot BQ \cdot \cos(\angle ABC + 60°)

Q R 2 = C Q 2 + C R 2 2 C Q C R cos ( A C B + 90 ° ) QR^2 = CQ^2 + CR^2 - 2 \cdot CQ \cdot CR \cdot \cos(\angle ACB + 90°)

Substituting the above values of A R AR , A P AP , B P BP , B Q BQ , C Q CQ , and C R CR , using the the identity cos ( a + b ) = cos a cos b sin a sin b \cos(a + b) = \cos a \cos b - \sin a \sin b , the law of cosine formulas from A B C \triangle ABC ( cos B A C = A C 2 + A B 2 B C 2 2 A C A B \cos \angle BAC = \frac{AC^2 + AB^2 - BC^2}{2 \cdot AC \cdot AB} , cos A B C = A B 2 + B C 2 A C 2 2 A B B C \cos \angle ABC = \frac{AB^2 + BC^2 - AC^2}{2 \cdot AB \cdot BC} , and cos A C B = A C 2 + B C 2 A B 2 2 A C B C \cos \angle ACB = \frac{AC^2 + BC^2 - AB^2}{2 \cdot AC \cdot BC} ), and the area K K formula from A B C \triangle ABC ( K = 1 2 A C B C sin A C B K = \frac{1}{2}AC \cdot BC \sin \angle ACB = = 1 2 A B A C sin B A C \frac{1}{2}AB \cdot AC \sin \angle BAC = = 1 2 A B B C sin A B C \frac{1}{2}AB \cdot BC \sin \angle ABC ), P R 2 PR^2 , P Q 2 PQ^2 , and Q R 2 QR^2 simplify to:

P R 2 = 1 2 B C 2 + 1 6 A C 2 + 2 3 3 K PR^2 = \frac{1}{2}BC^2 + \frac{1}{6}AC^2 + \frac{2\sqrt{3}}{3}K

P Q 2 = ( 3 3 3 2 ) B C 2 + ( 1 3 2 ) A C 2 + ( 4 3 6 ) K PQ^2 = (3 - \frac{3\sqrt{3}}{2})BC^2 + (1 - \frac{\sqrt{3}}{2})AC^2 + (4\sqrt{3} - 6)K

Q R 2 = ( 2 3 ) B C 2 + ( 2 3 3 3 ) A C 2 + ( 8 3 3 4 ) K QR^2 = (2 - \sqrt{3})BC^2 + (\frac{2}{3} - \frac{\sqrt{3}}{3})AC^2 + (\frac{8\sqrt{3}}{3} - 4)K

Then by the law of cosines on P Q R \triangle PQR , cos P R Q = P R 2 + Q R 2 P Q 2 2 P R Q R \cos \angle PRQ = \frac{PR^2 + QR^2 - PQ^2}{2 \cdot PR \cdot QR} which simplifies to cos P R Q = ( 1 2 + 3 2 ) B C 2 + ( 1 6 3 3 + 3 2 ) A C 2 + ( 2 2 3 3 ) K 2 ( 1 2 + 3 2 ) B C 2 + ( 1 6 3 3 + 3 2 ) A C 2 + ( 2 2 3 3 ) K 2 \cos \angle PRQ = \frac{(\frac{1}{2} + \frac{\sqrt{3}}{2})BC^2 + (-\frac{1}{6} - \frac{\sqrt{3}}{3} + \frac{\sqrt{3}}{2})AC^2 + (2 - \frac{2\sqrt{3}}{3})K}{2\sqrt{(\frac{1}{2} + \frac{\sqrt{3}}{2})BC^2 + (-\frac{1}{6} - \frac{\sqrt{3}}{3} + \frac{\sqrt{3}}{2})AC^2 + (2 - \frac{2\sqrt{3}}{3})K}^2} , which reduces further to cos P R Q = 1 2 \cos \angle PRQ = \frac{1}{2} , meaning P R Q = 60 ° \angle PRQ = 60° (regardless of A B C \triangle ABC !)

Similarly, cos Q P R = P R 2 + P Q 2 Q R 2 2 P R P Q \cos \angle QPR = \frac{PR^2 + PQ^2 - QR^2}{2 \cdot PR \cdot PQ} which simplifies to cos Q P R = 2 ( ( 3 2 4 + 6 4 ) B C 2 + ( 2 4 6 12 ) A C 2 + ( 6 2 ) K ) 2 ( 3 2 4 + 6 4 ) B C 2 + ( 2 4 6 12 ) A C 2 + ( 6 2 ) K 2 \cos \angle QPR = \frac{\sqrt{2}((\frac{3\sqrt{2}}{4} + \frac{\sqrt{6}}{4})BC^2 + (\frac{\sqrt{2}}{4} - \frac{\sqrt{6}}{12})AC^2 + (\sqrt{6} - \sqrt{2})K)}{2\sqrt{(\frac{3\sqrt{2}}{4} + \frac{\sqrt{6}}{4})BC^2 + (\frac{\sqrt{2}}{4} - \frac{\sqrt{6}}{12})AC^2 + (\sqrt{6} - \sqrt{2})K}^2} , which reduces further to cos P R Q = 2 2 \cos \angle PRQ = \frac{\sqrt{2}}{2} , meaning P R Q = 45 ° \angle PRQ = 45° (also regardless of A B C \triangle ABC ).

Finally, since the angle sum of a triangle is 180 ° 180° , and since P R Q = 45 ° \angle PRQ = 45° and P R Q = 60 ° \angle PRQ = 60° , P R Q = 180 ° 45 ° 60 ° = 75 ° \angle PRQ = 180° - 45° - 60° = 75° .

So regardless of A B C \triangle ABC , the three angles in P Q R \triangle PQR are always P R Q = 45 ° \angle PRQ = 45° , P R Q = 60 ° \angle PRQ = 60° , and P R Q = 75 ° \angle PRQ = 75° , and the largest of these angles is 75 \boxed{75} .

Is there a purely pure geometric way to solve this problem.

Srikanth Tupurani - 2 years, 12 months ago

Log in to reply

There might be, but I couldn't find one.

David Vreken - 2 years, 12 months ago

Actually, I found the fact, that those points R,Q,P are the centres of inscribed circles if we build up a 90-60-30 triangles properly on sides of triangle ABC. Therefore, maybe Napoleon theorem could be used for inspiration to prove some facts related to problem.

Carl Furse - 2 years, 11 months ago

Log in to reply

in this case AQ, BR and CP are concurrent. this can be proved by using very little trigonometry. but this fact is of no use. we need some creative constructions.

Srikanth Tupurani - 2 years, 11 months ago

Log in to reply

@Srikanth Tupurani another option is to draw angle bisectors of angles A,B and C. they intersect at H. from H draw perpendiculars to AR and AP. let them intersect at X,Y. also draw perpendiculars from H to BP and BQ. let them intersect at W and T. we get two cyclic quadrilaterals. Now we can draw the circumcirlces of the two cyclic quadrilaterals. we have two intersecting circles. and a point C outside. we can can convert this problem in to a totally different problem about circles. this may not lead to anything. i am not sure this will lead to solution.

Srikanth Tupurani - 2 years, 11 months ago

Log in to reply

@Srikanth Tupurani here another observation is perpendicular distance from H to AR=perpendicular distance from H to AP. similarly perpendicular distance from H to BP=perpendicular distance from H to BQ.

Srikanth Tupurani - 2 years, 11 months ago

ok i got it. but still we need to work hard.

Srikanth Tupurani - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...