Another unconscious algebra!

Algebra Level 3

1 a 2 ( a 6 + 3 a 4 b 2 + a 2 b 4 3 1 + b 6 ) 2 / 3 + [ ( b 2 / 3 a 2 / 3 ) 3 2 a 2 b 2 a 2 + ( b 2 / 3 a 2 / 3 ) 3 + 2 b 2 ] 3 \frac { 1 }{ { a }^{ 2 } } \sqrt { { \left( { a }^{ 6 } + \frac { 3{ a }^{ 4 } }{ { b }^{ -2 } } + \frac{ { a }^{ 2 }{ b }^{ 4 } }{ { 3 }^{ -1 } } + { b }^{ 6 } \right) }^{ 2/3 } } + { \left[ \frac { { \left( { b }^{ 2/3 }-{ a }^{ 2/3 } \right) }^{ 3 }-2{ a }^{ 2 }-{ b }^{ 2 } }{ { a }^{ 2 } + { \left( { b }^{ 2/3 }-{ a }^{ 2/3 } \right) }^{ 3 }+2{ b }^{ 2 } } \right] }^{ -3 }

Find the value of expression above for a = 2016 a = 2016 and b = 2017 b = 2017 .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

X = 1 a 2 ( a 6 + 3 a 4 b 2 + a 2 b 4 3 1 + b 6 ) 2 3 + ( ( b 2 3 a 2 3 ) 3 2 a 2 b 2 a 2 + ( b 2 3 a 2 3 ) 3 + 2 b 2 ) 3 = ( a 6 + 3 a 4 b 2 + 3 a 2 b 4 + b 6 ) 1 3 a 2 + ( a 2 + ( b 2 3 a 2 3 ) 3 + 2 b 2 ( b 2 3 a 2 3 ) 3 2 a 2 b 2 ) 3 = ( a 2 + b 2 ) 3 × 1 3 a 2 + ( a 2 + b 2 3 b 4 3 a 2 3 + 3 b 2 3 a 4 3 a 2 + 2 b 2 b 2 3 b 4 3 a 2 3 + 3 b 2 3 a 4 3 a 2 2 a 2 b 2 ) 3 = a 2 + b 2 a 2 + ( 3 b 2 3 b 4 3 a 2 3 + 3 b 2 3 a 4 3 3 b 4 3 a 2 3 + 3 b 2 3 a 4 3 3 a 2 ) 3 = a 2 + b 2 a 2 + ( b 2 b 4 3 a 2 3 + b 2 3 a 4 3 a 2 b 4 3 a 2 3 + b 2 3 a 4 3 ) 3 = a 2 + b 2 a 2 + b 2 a 2 ( b 4 3 b 2 3 a 2 3 + a 4 3 a 4 3 b 4 3 + b 2 3 a 2 3 ) 3 = a 2 + b 2 a 2 b 2 a 2 = a 2 a 2 = 1 \begin{aligned} X & = \frac 1{a^2} \sqrt{\left(a^6+\frac {3a^4}{b^{-2}}+\frac {a^2b^4}{3^{-1}} + b^6 \right)^\frac 23} + \left(\frac {\left(b^\frac 23 -a^\frac 23 \right)^3 - 2a^2-b^2}{a^2+\left(b^\frac 23 -a^\frac 23 \right)^3+2b^2} \right)^{-3} \\ & = \frac {(a^6+3a^4b^2+3a^2b^4+b^6) ^\frac 13}{a^2} + \left(\frac {a^2+\left(b^\frac 23 -a^\frac 23 \right)^3+2b^2}{\left(b^\frac 23 -a^\frac 23 \right)^3 - 2a^2-b^2} \right)^3 \\ & = \frac {(a^2+b^2)^{3 \times \frac 13}}{a^2} + \left(\frac {a^2+ b^2 - 3b^\frac 43 a^\frac 23 + 3b^\frac 23 a^\frac 43 - a^2 +2b^2}{b^2 - 3b^\frac 43 a^\frac 23 + 3b^\frac 23 a^\frac 43 - a^2 - 2a^2-b^2} \right)^3 \\ & = \frac {a^2+b^2}{a^2} + \left(\frac {3b^2 - 3b^\frac 43 a^\frac 23 + 3b^\frac 23 a^\frac 43}{- 3b^\frac 43 a^\frac 23 + 3b^\frac 23 a^\frac 43 - 3a^2} \right)^3 \\ & = \frac {a^2+b^2}{a^2} + \left(\frac {b^2 - b^\frac 43 a^\frac 23 + b^\frac 23 a^\frac 43}{-a^2 - b^\frac 43 a^\frac 23 + b^\frac 23 a^\frac 43} \right)^3 \\ & = \frac {a^2+b^2}{a^2} + \frac {b^2}{a^2} \left(\frac {b^\frac 43-b^\frac 23 a^\frac 23 + a^\frac 43}{-a^\frac 43-b^\frac 43 + b^\frac 23 a^\frac 23} \right)^3 \\ & = \frac {a^2+b^2}{a^2} - \frac {b^2}{a^2} \\ & = \frac {a^2}{a^2} = \boxed{1} \end{aligned}

@Chew-Seong Cheong

Nicely done.

At the first sight, do you thought that its going to be tough simplification?

Priyanshu Mishra - 4 years, 6 months ago

Log in to reply

Yes, I solved it by substituting in the numbers then only solved it by factoring.

Chew-Seong Cheong - 4 years, 6 months ago

Log in to reply

Help me in this also

https://brilliant.org/problems/telescopic-generations/?ref_id=1293707/

Priyanshu Mishra - 4 years, 6 months ago

Log in to reply

@Priyanshu Mishra Your solution is wrong. It should be 1948 + 1949 = 3897 1948+1949=\boxed{3897} . Please change it so that I can enter a solution.

Chew-Seong Cheong - 4 years, 6 months ago

Log in to reply

@Chew-Seong Cheong But its answer is 2432 only. Its not 3897

Priyanshu Mishra - 4 years, 6 months ago

Log in to reply

@Priyanshu Mishra Sorry, you are right. The answer is 1948 2 1949 = 487 2 1945 \dfrac {1948}{\sqrt{2^{1949}}} = \dfrac {487}{\sqrt{2^{1945}}} . I forgot to simplify it.

Chew-Seong Cheong - 4 years, 6 months ago

Log in to reply

@Chew-Seong Cheong So, are you now posting the solution?

Priyanshu Mishra - 4 years, 6 months ago

Log in to reply

@Priyanshu Mishra Yes, doing it now.

Chew-Seong Cheong - 4 years, 6 months ago

Log in to reply

@Chew-Seong Cheong Please help me to align my solution to extreme left of this problem:

Easier Trigonometry

Priyanshu Mishra - 4 years, 6 months ago

Log in to reply

@Priyanshu Mishra [link title] (link address), with no space between ] and (. For example: Easier Trigonometry .

Chew-Seong Cheong - 4 years, 6 months ago

@Chew-Seong Cheong,

help me in this one also link

Priyanshu Mishra - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...