tan − 1 x + cos − 1 ( 1 + y 2 y ) = sin − 1 1 0 3
( x , y ) ∈ Z +
The above equation has ζ ordered ( x , y ) solutions and let:
( x i + y i ) least × ( y i − x i ) max = β
where ( x i , y i ) denote the i th ordered solution in the solution set of above equation.
ζ + β = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Always elegant solutions... (+1).. :-)
Here Geometry<Number Theory..
Awesome solution as usual :P
The above equation can rewritten by few basics of inverse trig. As tan − 1 x + tan − 1 y 1 = tan − 1 3 Solving this we get y = 3 − x 3 x + 1 and x = 3 + y 3 y − 1 Since x , y are positive integers x < 3 or x = 1 , 2 the corresponding values of y are 2 , 7 .
Therefore the orders pairs are ( 1 , 2 ) and ( 2 , 7 ) .
We see that ζ = 2 and β = 1 5 . Hence the answer is 1 5 + 2 = 1 7
Oh.. Well written solution.. (+1).... Just to solve that equation you can write it as: ( 3 − x ) ( y + 3 ) = 1 0 and then factors of 10 will do the job.. Anyways Nice...
Log in to reply
Can you explain why its equal to 10.
Log in to reply
Just a rearrangement of y = 3 − x 3 x + 1 ⟹ y = − 3 + 3 − x 1 0 ⟹ ( y + 3 ) ( 3 − x ) = 1 0 .
Problem Loading...
Note Loading...
Set Loading...
tan − 1 x + cos − 1 1 + y 2 y ⇒ tan − 1 x + tan − 1 y 1 tan ( tan − 1 x + tan − 1 y 1 ) 1 − y x x + y 1 y − x x y + 1 x y + 1 x y + 3 x − 3 y + 1 ( x − 3 ) ( y + 3 ) + 1 0 ⇒ ( x − 3 ) ( y + 3 ) = sin − 1 1 0 3 = tan − 1 3 = tan ( tan − 1 3 ) = 3 = 3 = 3 y − 3 x = 0 = 0 = − 1 0
For ( x , y ) ∈ Z + , ⇒ ( x − 3 ) ( y + 3 ) = { ( − 2 ) ( 5 ) ( − 1 ) ( 1 0 ) ⇒ x = 1 , ⇒ x = 2 , y = 2 y = 7
⇒ ζ = 2 , β = ( 1 + 2 ) ( 7 − 2 ) = 1 5 and ζ + β = 1 7