Are you ready for JEE-5

Geometry Level 5

tan 1 x + cos 1 ( y 1 + y 2 ) = sin 1 3 10 \large\tan^{-1} x+\cos^{-1}\left(\dfrac{y}{\sqrt{1+y^2}}\right)=\sin^{-1} \dfrac{3}{\sqrt{10}}

( x , y ) Z + (x,y)\in\mathbb{Z^+}

The above equation has ζ \color{#3D99F6}{\zeta} ordered ( x , y ) (x,y) solutions and let:

( x i + y i ) least × ( y i x i ) max = β \large\left(x_i+y_i\right)_{\text{least}}\times \left(y_i-x_i\right)_{\text{max}}=\color{#3D99F6}{\beta}

where ( x i , y i ) (x_i,y_i) denote the i i th ordered solution in the solution set of above equation.

ζ + β = ? \large \color{#3D99F6}{\zeta}+\color{#3D99F6}{\beta}=\ ?


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 15, 2016

tan 1 x + cos 1 y 1 + y 2 = sin 1 3 10 tan 1 x + tan 1 1 y = tan 1 3 tan ( tan 1 x + tan 1 1 y ) = tan ( tan 1 3 ) x + 1 y 1 x y = 3 x y + 1 y x = 3 x y + 1 = 3 y 3 x x y + 3 x 3 y + 1 = 0 ( x 3 ) ( y + 3 ) + 10 = 0 ( x 3 ) ( y + 3 ) = 10 \begin{aligned} \tan^{-1}x + \cos^{-1} \frac{y}{\sqrt{1+y^2}} & = \sin^{-1} \frac{3}{\sqrt{10}} \\ \Rightarrow \tan^{-1}x + \tan^{-1} \frac{1}{y} & = \tan^{-1} 3 \\ \tan \left( \tan^{-1}x + \tan^{-1} \frac{1}{y} \right) & = \tan \left( \tan^{-1} 3 \right) \\ \frac{x+\frac{1}{y}}{1-\frac{x}{y}} & = 3 \\ \frac{xy+1}{y-x} & = 3 \\ xy+ 1 & = 3y - 3x \\ xy + 3x - 3y + 1 & = 0 \\ (x-3)(y+3) + 10 & = 0 \\ \Rightarrow (x-3)(y+3) & = -10 \end{aligned}

For ( x , y ) Z + (x,y) \in \mathbb Z^+ , ( x 3 ) ( y + 3 ) = { ( 2 ) ( 5 ) x = 1 , y = 2 ( 1 ) ( 10 ) x = 2 , y = 7 \Rightarrow \color{#D61F06}{(x-3)} \color{#3D99F6}{(y+3)} = \begin{cases} \color{#D61F06}{(-2)} \color{#3D99F6}{(5)} & \Rightarrow \color{#D61F06}{x = 1}, & \color{#3D99F6}{y = 2} \\ \color{#D61F06}{(-1)} \color{#3D99F6}{(10)} & \Rightarrow \color{#D61F06}{x = 2}, & \color{#3D99F6}{y = 7} \end{cases}

ζ = 2 \Rightarrow \zeta = 2 , β = ( 1 + 2 ) ( 7 2 ) = 15 \beta = (1+2)(7-2) = 15 and ζ + β = 17 \zeta + \beta = \boxed{17}

Always elegant solutions... (+1).. :-)

Rishabh Jain - 5 years, 2 months ago

Here Geometry<Number Theory..

Md Zuhair - 3 years, 5 months ago

Awesome solution as usual :P

Harry Jones - 3 years, 5 months ago
Vignesh S
Apr 15, 2016

The above equation can rewritten by few basics of inverse trig. As tan 1 x + tan 1 1 y = tan 1 3 \large\tan^{-1}x+\tan^{-1}\dfrac{1}{y}=\tan^{-1}3 Solving this we get y = 3 x + 1 3 x y=\dfrac{3x+1}{3-x} and x = 3 y 1 3 + y x=\dfrac{3y-1}{3+y} Since x , y x,y are positive integers x < 3 x<3 or x = 1 , 2 x=1,2 the corresponding values of y y are 2 , 7 2,7 .

Therefore the orders pairs are ( 1 , 2 ) \color{#D61F06}{(1,2)} and ( 2 , 7 ) \color{#D61F06}{(2,7)} .

We see that ζ = 2 \color{#3D99F6}{\zeta}=2 and β = 15 \color{#3D99F6}{\beta}=15 . Hence the answer is 15 + 2 = 17 \color{#EC7300}{15+2=\boxed{17}}

Oh.. Well written solution.. (+1).... Just to solve that equation you can write it as: ( 3 x ) ( y + 3 ) = 10 (3-x)(y+3)=10 and then factors of 10 will do the job.. Anyways Nice...

Rishabh Jain - 5 years, 2 months ago

Log in to reply

Can you explain why its equal to 10.

Vignesh S - 5 years, 2 months ago

Log in to reply

Just a rearrangement of y = 3 x + 1 3 x y=\dfrac{3x+1}{3-x} y = 3 + 10 3 x \implies y=-3+\dfrac{10}{3-x} ( y + 3 ) ( 3 x ) = 10 \implies (y+3)(3-x)=10 .

Rishabh Jain - 5 years, 2 months ago

Log in to reply

@Rishabh Jain Oh. OK , this gives it directly

Vignesh S - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...