Are you smarter than me? 34

Calculus Level 4

If x 2 + y 2 = 3 , x^2+y^2=3, then what is the maximum value of

( 3 x + 10 y ) 2 + ( 8 x + 11 y ) 2 ? (3x+10y)^2+(8x+11y)^2?

Round your answer to the nearest thousandth.


The answer is 858.852.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Chew-Seong Cheong
Dec 22, 2014

Let me write out the solution as suggested by Incredible Mind.

Let x = 3 cos θ x = \sqrt{3}\cos {\theta} and y = 3 sin θ y = \sqrt{3}\sin {\theta} .

Then, we have:

f ( x , y ) = ( 3 x + 10 y ) 2 + ( 8 x + 11 y ) 2 f(x,y) = (3x+10y)^2+(8x+11y)^2

= ( 3 3 cos θ + 10 3 sin θ ) 2 + ( 8 3 cos θ + 11 3 sin θ ) 2 = (3\sqrt{3}\cos {\theta} + 10\sqrt{3}\sin {\theta})^2 + (8\sqrt{3}\cos {\theta} + 11\sqrt{3}\sin {\theta})^2

= 27 cos 2 θ + 180 sin θ cos θ + 300 sin 2 θ + 192 cos θ + 528 sin θ cos θ + 363 sin 2 θ = 27\cos^2 {\theta} + 180\sin {\theta}\cos {\theta} + 300\sin^2 {\theta} + 192\cos {\theta} + 528\sin {\theta}\cos {\theta} + 363\sin^2 {\theta}

= 219 cos 2 θ + 708 sin θ cos θ + 663 sin 2 θ = 219\cos^2 {\theta} + 708\sin {\theta}\cos {\theta} + 663\sin^2 {\theta}

= 219 + 354 sin 2 θ + 444 sin 2 θ = 219 + 354\sin {2\theta} + 444\sin^2 {\theta}

= 219 + 354 sin 2 θ 222 ( 1 2 sin 2 θ ) + 222 = 219 + 354\sin {2\theta} - 222(1 - 2\sin^2 {\theta}) + 222

= 354 sin 2 θ 222 cos 2 θ + 441 = 354\sin {2\theta} - 222\cos {2\theta} + 441

f ( x , y ) = f ( θ ) = 354 sin 2 θ 222 cos 2 θ + 441 \Rightarrow f(x,y) = f(\theta) = 354\sin {2\theta} - 222\cos {2\theta} + 441

Maximum of f ( θ ) f(\theta) occurs when d d θ f ( θ ) = 0 \frac {d}{d\theta} f(\theta) = 0 .

d d θ f ( θ ) = d d θ ( 354 sin 2 θ 222 cos 2 θ + 441 ) \frac {d}{d\theta} f(\theta) = \frac {d}{d\theta} (354\sin {2\theta} - 222\cos {2\theta} + 441)

= 708 cos 2 θ + 444 sin 2 θ \quad \quad \quad \quad = 708 \cos {2\theta} + 444 \sin{2\theta}

d d θ f ( θ ) = 0 tan 2 θ = 708 444 = 59 37 \frac {d}{d\theta} f(\theta) = 0\quad \Rightarrow \tan {2\theta} = - \dfrac {708}{444} = - \dfrac {59} {37}

sin 2 θ = 59 4850 cos 2 θ = 37 4850 \quad \Rightarrow \sin {2\theta} = \dfrac {59}{ \sqrt {4850} }\quad \Rightarrow \cos {2\theta} = - \dfrac {37}{ \sqrt {4850} }

Substituting in f ( θ ) f(\theta) , we have:

f ( θ ) = 354 sin 2 θ 222 cos 2 θ + 441 f(\theta) = 354\sin {2\theta} - 222\cos {2\theta} + 441

= 354 × 0.847190627 222 × ( 0.531289037 ) + 441 \quad \quad = 354\times 0.847190627- 222\times (-0.531289037) + 441

= 858.852 \quad \quad = \boxed{858.852}

Y e s s , Y o u r i n c r e d i b l e m i n d \LARGE Yess,~~Your~incredible~~mind \huge \diamondsuit\spadesuit

Mehul Chaturvedi - 6 years, 5 months ago

Sir please suggest me any book for maths

Mehul Chaturvedi - 6 years, 5 months ago

Log in to reply

Sorry Mehul, I don't know any book to recommend you. You have to do a lot of calculation yourself to learn the tricks. Read some of the techniques used by others. Really, I was reminded that we can use x = r cos θ x=r\cos{\theta} and y = r sin θ y=r\sin{\theta} from Incredible Mind. I forgot because lack of practice. I solved it using numerical method using a spreadsheet first getting y y from y = 3 x 2 y = \sqrt{3-x^2} , the plotting the curve with x x and y y to find the maximum.

Chew-Seong Cheong - 6 years, 5 months ago

Log in to reply

But if it would be x 3 + y 3 = 3 x^3+y^3=3

Mehul Chaturvedi - 6 years, 5 months ago

Log in to reply

@Mehul Chaturvedi x = 3 1 / 3 sin 2 / 3 θ , y = 3 1 / 3 cos 2 / 3 θ x=3^{1/3}\sin^{2/3}\theta, y=3^{1/3}\cos^{2/3}\theta

Dirty but I am shameless enough to use such substitutions!

Pranjal Jain - 6 years, 5 months ago

Log in to reply

@Pranjal Jain Hey, what's up?

Satvik Golechha - 5 years, 3 months ago

Generally in which standard a man should be to solve this question?

Rishabh Kumar - 6 years, 5 months ago

Log in to reply

In india it should be 9th

Mehul Chaturvedi - 6 years, 5 months ago

Log in to reply

Well....if we can solve it in class 9 or 8th it doesn't mean generally every child in India can do so at that age.......since, Maxima and extrema are introduced in Class 12th NCERT......just saying....

Aaghaz Mahajan - 3 years, 3 months ago

In the third line, it should be: 192 cos 2 θ 192 \cos^2\theta

Rishik Jain - 5 years, 3 months ago

Est ce que cette méthode est toujours efficace lorsqu'on a un cercle ?

Omar El Mokhtar - 6 years, 5 months ago

Log in to reply

Oui, il réduit de deux variables x x et y y à une seule θ \theta .

Chew-Seong Cheong - 6 years, 5 months ago
Jakub Šafin
Dec 23, 2014

Lagrange multipliers strike again!

We have a condition of g ( x , y ) = x 2 + y 2 3 = 0 g(x,y)=x^2+y^2-3=0 and want to minimize f ( x , y ) = 73 x 2 + 221 y 2 + 2 118 x y f(x,y)=73x^2+221y^2+2\cdot118xy (note that 221 73 = 118 221-73=118 ). This implies there's a number λ \lambda such that f = λ g \vec{\nabla}f=\lambda\vec{\nabla}g . Computing the gradients, we get f = 2 ( 73 x + 118 y , 221 y + 118 x ) \vec{\nabla}f=2(73x+118y,221y+118x) and g = 2 ( x , y ) \vec{\nabla}g=2(x,y) .

First, we can notice that x = 0 y = 0 x=0 \Leftrightarrow y=0 and f ( x , y ) = 0 f(x,y)=0 . That's a minimum, we don't want that. Otherwise, we can express λ = 73 + 118 k = 221 + 118 1 k \lambda=73+118k=221+118\frac{1}{k} ( k = x / y k=x/y is defined here). That leads to a well-known quadratic equation k 2 k 1 = 0 k^2-k-1=0 with solution x = y 1 ± 5 2 x=y\frac{1\pm\sqrt{5}}{2} . Using the condition g ( x , y ) = 0 g(x,y)=0 gets us y = ± 6 5 ± 5 , x = ± 6 5 5 . y=\pm\sqrt\frac{6}{5\pm\sqrt{5}}\,, x=\pm\sqrt\frac{6}{5\mp\sqrt{5}}\,.

Clearly, the maximum is attained for identical signs of x x and y y . Substituting back into f ( x , y ) f(x,y) , we get the value in the maximum as (along the way, we pick the right ± \pm signs) 221 6 5 ± 5 + 73 6 5 5 + 2 118 6 20 = 221 6 ( 5 5 ) 20 + 73 6 ( 5 ± 5 ) 20 + 2 118 6 20 20 = ( 221 + 73 ) 30 + ( 221 73 ) 6 5 + 118 24 5 20 = 3 ( 147 + 59 5 ) . 221\cdot\frac{6}{5\pm\sqrt{5}}+73\cdot\frac{6}{5\mp\sqrt{5}}+2\cdot118\cdot\frac{6}{\sqrt{20}}=221\cdot\frac{6(5\mp\sqrt{5})}{20}+73\cdot\frac{6(5\pm\sqrt{5})}{20}+2\cdot118\cdot\frac{6\sqrt{20}}{20}=\frac{(221+73)\cdot30+(221-73)\cdot6\sqrt{5}+118\cdot24\sqrt{5}}{20}=3(147+59\sqrt{5})\,. tl;dr the answer is 3 ( 147 + 59 5 ) 3(147+59\sqrt{5}) . The smart way, of course, would've been to avoid this last long simplification and just throw the values of x , y x,y into a calculator.

Did it same way!

Fariz Azmi Pratama - 5 years, 10 months ago

I think you meant 221 - 73 = 148, but cool solution nonetheless!

Ameya Daigavane - 5 years, 5 months ago
Incredible Mind
Dec 21, 2014

EASY, change to parametric form hence x=(3^0.5)cost and y=x=(3^0.5)sint. Now substitute into the required function and you get f(t)=3( (3cost+10sint)^2+(8cost+11sint)^2 ) Just differentiate with respect to t and hence find max/min .You will find t=1.065

Samarth Agarwal
Oct 24, 2015

x 2 + y 2 = 3 i s a c i r c l e a n d ( 3 x + 10 y ) 2 + ( 8 x + 11 y ) 2 = k i s a n e l l i p s e . k w i l l b e m a x i m u m w h e n t h e e l l i p s e j u s t t o u c h e s t h e c i r c l e e x t e r n a l l y . T a k i n g p o l a r c o o r d i n a t e s x = 3 c o s θ y = 3 s i n θ a n d w o r k i n g s a m e a s I n c r e d i b l e m i n d w e g e t t h e v a l u e o f k a s 858.852. { x }^{ 2 }+{ y }^{ 2 }=3\quad is\quad a\quad circle\quad and\quad { (3x+10y) }^{ 2 }+{ (8x+11y) }^{ 2 }=k\quad is\quad an\quad ellipse.\\ k\quad will\quad be\quad maximum\quad when\quad the\quad ellipse\quad just\quad touches\quad the\quad circle\quad externally.\\ Taking\quad polar\quad co-ordinates\\ x=\sqrt { 3 } cos\theta \\ y=\sqrt { 3 } sin\theta \\ and\quad working\quad same\quad as\quad Incredible\quad mind\quad we\quad get\quad the\quad value\quad of\quad k\quad as\quad 858.852.

Josh Banister
Dec 24, 2015

For those who aren't as good at trigonometry, there is also a more algebraic way.

First, I added the new condition y = u x y = ux where u is a real constant. Substituting this into x 2 + y 2 = 3 x^2 + y^2 = 3 gives x 2 + ( u x ) 2 = 3 x 2 ( u 2 + 1 ) = 3 x 2 = 3 u 2 + 1 x^2 + (ux)^2 = 3 \\ \implies x^2(u^2 + 1) = 3 \\ \implies x^2 = \frac{3}{u^2 + 1}

Now if we use substitutions on the expression we're trying to find the maximum of, we have the following. ( 3 x + 10 y ) 2 + ( 8 x + 11 y ) 2 = ( 3 x + 10 u x ) 2 + ( 8 x + 11 u x ) 2 = x 2 ( ( 3 + 10 u ) 2 + ( 8 + 11 u ) 2 ) = 221 u 2 + 236 u + 73 u 2 + 1 \begin{aligned} (3x + 10y)^2 + (8x + 11y)^2 &= (3x + 10ux)^2 + (8x + 11ux)^2 \\ &= x^2 \big((3+10u)^2 + (8+11u)^2 \big) \\ &= \frac{221u^2 + 236u + 73}{u^2 + 1} \end{aligned}

I'll call this rational expression f ( u ) f(u) . The maximum of f ( u ) f(u) occurs when f ( u ) = 0 f'(u) = 0 and so by using the quotient rule, we have f ( u ) = 4 ( 59 u 2 + 74 u + 59 ) ( u 2 + 1 ) 2 f'(u) = \frac{4(-59u^2 + 74u + 59)}{(u^2 + 1)^2} For f ( u ) = 0 f'(u) = 0 , we must have u u satisfying 59 u 2 + 74 u + 59 = 0 -59u^2 + 74u + 59 = 0 . From then on it's just a simple use of the quadratic equation and substituting the positive value of u u (as that is the value which gives f ( u ) f(u) its maximum) and that gives ( 3 x + 10 y ) 2 + ( 8 x + 11 y ) 2 (3x + 10y)^2 + (8x + 11y)^2 its maximum of around 858.852.

Bill Bell
Nov 24, 2015

Alternatively, you can perform this calculation using the eigenvectors of the given form. Expand it, express it in simplest terms as a family of ellipses that are not aligned with the co-ordinate axes. Write the ellipses in matrix form and calculate the eigenvectors of this matrix. Express the eigenvectors in co-ordinate form and calculate the intersections of these vectors with the given circle. Now calculate the values of the original ellipse at these intersections. Choose the biggest value. Done here using symbolic algebra. Otherwise I would never have completed this.

Aakash Khandelwal
Oct 27, 2015

Just put x=sqrt(3) cos(m) and y=sqrt(3) sin(m).

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...