Are your basics crystal clear?

Calculus Level 5

0 1 ( cot 1 ( x 2 + 2 ) ( x 2 + 1 ) ( x 2 + 2 ) ) d x \large \int _{ 0 }^{ 1 }{ \left( \frac { { \cot }^{ -1 }\left( \sqrt { { x }^{ 2 }+2 } \right) }{ \left( { x }^{ 2 }+1 \right) \left( \sqrt { { x }^{ 2 }+2 } \right) } \right) }dx

If the integral above equals to π A B \dfrac { { \pi }^{ A } }{ B } for positive integers A A and B B , find A + B A+B .

Try more here!


The answer is 34.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aditya Kumar
Sep 20, 2015

I = 0 1 ( c o t 1 ( x 2 + 2 ) ( x 2 + 1 ) ( x 2 + 2 ) ) = 0 1 ( t a n 1 ( 1 x 2 + 2 ) ( x 2 + 1 ) ( x 2 + 2 ) ) we know that, 1 a t a n 1 ( 1 a ) = 0 1 1 y 2 + a 2 d y I = 0 1 0 1 1 ( x 2 + 1 ) ( y 2 + x 2 + 2 ) d y . d x = 0 1 0 1 1 ( x 2 + 1 ) ( 1 y 2 + 1 1 y 2 + x 2 + 2 ) d y . d x = 1 2 0 1 0 1 1 ( x 2 + 1 ) ( y 2 + 1 ) d y . d x = 1 2 ( 0 1 1 y 2 + 1 d y ) 2 I = π 2 32 I=\int _{ 0 }^{ 1 }{ \left( \frac { { cot }^{ -1 }\left( \sqrt { { x }^{ 2 }+2 } \right) }{ \left( { x }^{ 2 }+1 \right) \left( \sqrt { { x }^{ 2 }+2 } \right) } \right) } \\ \quad =\int _{ 0 }^{ 1 }{ \left( \frac { { tan }^{ -1 }\left( \frac { 1 }{ \sqrt { { x }^{ 2 }+2 } } \right) }{ \left( { x }^{ 2 }+1 \right) \left( \sqrt { { x }^{ 2 }+2 } \right) } \right) } \\\mbox{ we know that,}\quad \\ \frac { 1 }{ a } { tan }^{ -1 }\left( \frac { 1 }{ a } \right) =\int _{ 0 }^{ 1 }{ \frac { 1 }{ { y }^{ 2 }+{ a }^{ 2 } } dy } \\ I=\int _{ 0 }^{ 1 }{ \int _{ 0 }^{ 1 }{ \frac { 1 }{ \left( { x }^{ 2 }+1 \right) \left( { y }^{ 2 }+{ x }^{ 2 }+2 \right) } dy.dx } } \\ \quad =\int _{ 0 }^{ 1 }{ \int _{ 0 }^{ 1 }{ \frac { 1 }{ \left( { x }^{ 2 }+1 \right) } \left( \frac { 1 }{ { y }^{ 2 }+1 } -\frac { 1 }{ { y }^{ 2 }+{ x }^{ 2 }+2 } \right) dy.dx } } \\ \quad =\frac { 1 }{ 2 } \int _{ 0 }^{ 1 }{ \int _{ 0 }^{ 1 }{ \frac { 1 }{ \left( { x }^{ 2 }+1 \right) \left( { y }^{ 2 }+1 \right) } dy.dx } } \\ \quad =\frac { 1 }{ 2 } { \left( \int _{ 0 }^{ 1 }{ \frac { 1 }{ { y }^{ 2 }+1 } dy } \right) }^{ 2 }\\ I=\frac { { \pi }^{ 2 } }{ 32 }

Great work! Brilliant!

Kartik Sharma - 5 years, 7 months ago

Log in to reply

Thanks! What was ur method to solve?

Aditya Kumar - 5 years, 7 months ago

Log in to reply

My method was way longer - with the series and all.

Kartik Sharma - 5 years, 7 months ago

Wow!                           .

Kenny Lau - 5 years, 8 months ago

Log in to reply

Thanks!

.

Aditya Kumar - 5 years, 8 months ago

Log in to reply

Better if you use \mbox{we know that} :)

Kenny Lau - 5 years, 7 months ago

Log in to reply

@Kenny Lau What would that do?

Aditya Kumar - 5 years, 7 months ago

Log in to reply

@Aditya Kumar Make the "we know that" not italics.

Kenny Lau - 5 years, 7 months ago

Log in to reply

@Kenny Lau Done!

                                             :)

Aditya Kumar - 5 years, 7 months ago

Log in to reply

@Aditya Kumar And.... put a backslash before all functions, i.e. "\tan" instead of "tan".

Kenny Lau - 5 years, 7 months ago

@Abhishek Bakshi see this and comment.

Aditya Kumar - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...