Area........Perimeter

Geometry Level 5

Δ A B C \color{#D61F06}{\Delta ABC} is a right angled triangle with integral sides a \color{#EC7300}{a} , b \color{#E81990}{b} , and c \color{#20A900}{c} , having the special property that the area of the triangle is numerically double its perimeter.

Determine the maximum possible area of Δ A B C \color{#3D99F6}{\Delta ABC} .


The answer is 180.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Let P P be the perimeter and A A the area. So, P = a + b + c P=a+b+c and A = a b 2 A=\dfrac{ab}{2} . We need that A = 2 P A=2P , so:

a b 2 = 2 ( a + b + c ) \dfrac{ab}{2}=2(a+b+c)

Also, we know that c = a 2 + b 2 c=\sqrt{a^2+b^2} , so:

a b = 4 ( a + b + a 2 + b 2 ) ab=4(a+b+\sqrt{a^2+b^2})

Rearrange to delete that square root, and express a 2 + b 2 a^2+b^2 as ( a + b ) 2 2 a b (a+b)^2-2ab :

a b 4 ( a + b ) = 4 ( a + b ) 2 2 a b ab-4(a+b)=4\sqrt{(a+b)^2-2ab}

Square both sides:

( a b ) 2 8 a b ( a + b ) + 16 ( a + b ) 2 = 16 ( a + b ) 2 32 a b (ab)^2-8ab(a+b)+16(a+b)^2=16(a+b)^2-32ab

Rearrange again, simplify and solve for a a :

( a b ) 2 + 32 a b = 8 a b ( a + b ) (ab)^2+32ab=8ab(a+b)

a b + 32 = 8 ( a + b ) ab+32=8(a+b)

a b 8 a = 8 b 32 ab-8a=8b-32

a = 8 b 32 b 8 a=\dfrac{8b-32}{b-8}

Now, let's assume that a > b a>b . The only three pairs of positive integers a a and b b that satisfy the equation and the condition are: ( a , b ) = ( 16 , 12 ) , ( 24 , 10 ) , ( 40 , 9 ) (a,b)=(16,12),(24,10),(40,9)

From these pairs, ( a , b ) = ( 40 , 9 ) (a,b)=(40,9) maximizes the area, so the maximum area is:

A = a b 2 = 40 × 9 2 = 180 A=\dfrac{ab}{2}=\dfrac{40 \times 9}{2}=\boxed{180}

Thanks, Goshingly aw'some solution...

Satvik Golechha - 6 years, 11 months ago

Log in to reply

Thanks bro :D

Alan Enrique Ontiveros Salazar - 6 years, 10 months ago

Log in to reply

BTW Is your status reminding me of Fermat?

Satvik Golechha - 6 years, 10 months ago

Log in to reply

@Satvik Golechha Was it really Fermat who'd said this...? @Satvik Golechha

Krishna Ar - 6 years, 10 months ago

Log in to reply

@Krishna Ar Fermat said that he had a proof of his little theorem, but the margin was too small to contain it... @Krishna Ar

Satvik Golechha - 6 years, 10 months ago

did almost the same!!

Kartik Sharma - 6 years, 8 months ago

Same here!!

Mehul Chaturvedi - 6 years, 5 months ago

I too started the same way. But left it midway, thought to be laborious. Then want for the other method.

Niranjan Khanderia - 4 years, 9 months ago
Michael Mendrin
Jul 17, 2014

Using the formula for Pythagorean triples, let

a = ( m 2 n 2 ) k a={ (m }^{ 2 }-{ n }^{ 2 })k
b = 2 m n k b=2mnk
c = ( m 2 + n 2 ) k c={ (m }^{ 2 }+{ n }^{ 2 })k
Then the condition 1 2 a b = 2 ( a + b + c ) \dfrac { 1 }{ 2 } ab=2(a+b+c)


becomes, after re-arranging and factoring

2 k m ( m + n ) ( k n 2 k m n + 4 ) = 0 2km(m+n)(k{ n }^{ 2 }-kmn+4)=0

so solving for m m we have m = k n 2 + 4 k n m=\dfrac { k{ n }^{ 2 }+4 }{ kn }

which means that k n kn must divide into 4 4 .

Now, the area becomes 8 k n 2 + 64 k n 2 + 48 8k{ n }^{ 2 }+\dfrac { 64 }{ k{ n }^{ 2 } } +48

which has the maximum value of 180 180

when k = 1 k=1 and n = 4 n=4

Can you explain that how did you find Max value of the function ?

Dheeraj Agarwal - 6 years, 5 months ago

But if we assume n = 8 \displaystyle\color{royalblue}{n=8} and k = 1 \color{royalblue}{k=1} then it would give us 624 \color{#D61F06}{624}

Mehul Chaturvedi - 6 years, 5 months ago
Tom Engelsman
Oct 19, 2017

Let the sides of right triangle ABC be expressed by the integral values:

a = p 2 q 2 a = p^2 - q^2 , b = 2 p q b = 2pq , c = p 2 + q 2 c = p^2 + q^2

where p , q N p,q \in \mathbb{N} and p > q p > q . Knowing the area is twice the perimeter, we arrive at:

a b 2 = 2 ( a + b + c ) ( p 2 q 2 ) ( 2 p q ) 2 = 2 [ ( p 2 q 2 ) + 2 p q + ( p 2 + q 2 ) ] ; \frac{ab}{2} = 2(a + b + c) \Rightarrow \frac{(p^2 - q^2)(2pq)}{2} = 2[(p^2 - q^2) + 2pq + (p^2 + q^2)];

or ( p + q ) ( p q ) p q = 2 ( 2 p 2 + 2 p q ) ; (p+q)(p-q)pq = 2(2p^2 + 2pq);

or ( p + q ) ( p q ) p q = 4 p ( p + q ) ; (p+q)(p-q)pq = 4p(p+q);

or ( p q ) q = 4 ; (p-q)q = 4;

or p = 4 q + q p = \frac{4}{q} + q .

If p is to be a positive integer, then we require q = 1 , 2 , 4 ( p , q ) = ( 5 , 1 ) ; ( 4 , 2 ) ; ( 5 , 4 ) q = 1, 2, 4 \Rightarrow (p,q) = (5,1); (4,2); (5,4) . The corresponding triplets ( a , b , c ) (a,b,c) for right triangle ABC are computed to be ( a , b , c ) = ( 24 , 10 , 26 ) ; ( 12 , 16 , 20 ) ; ( 9 , 40 , 41 ) (a,b,c) = (24,10,26); (12,16,20); (9,40,41) . Of these three choices, the ( 9 , 40 , 41 ) (9,40,41) primitive triplet yields the maximum area of 180 . \boxed{180}.

W o r k i n g o u t t h e l i s t o f P y t h a g o r e a n T r i p l e s . W i t h a l l l e t t e r s r e p r e s e n t i n g i n t e g e r s , P r i m i t i v e t r i p l e ( a , b , c ) , P = p e r i m e t e r , T = a r e a , a n d k = T P , a c o n s t a n t f o r a g i v e n ( a , b , c ) . V a l u e o f k i n c r e a s e s a s t r i a n g l e s b e c o m e b i g g e r . F i r s t 7 p r i m i t i v e t r i p l e s a r e , ( 3 , 4 , 5 ) , ( 5 , 12 , 13 ) , ( 8 , 15 , 17 ) , ( 7 , 24 , 25 ) , ( 9 , 40 , 41 ) , ( 11 , 60 , 61 ) , ( 12 , 35 , 37 ) , We are interested in k=2, and maximum area. So, we start from the bigger triples. ( 12 , 35 , 37 ) g i v e s T 1 P 1 = 210 84 = 2.5 = k > 2. So we should go for smaller triangle. ( 11 , 60 , 61 ) g i v e s T 1 P 1 = 330 132 = 2.5 = k > 2. So we should still go for smaller triangle. ( 9 , 40 , 41 ) g i v e s T 1 P 1 = 180 90 = 2. O K . S o t h e a r e a r e q u i r e d i s 180. F o r t r i p l e ( a , b , c ) , T = 1 2 a b , P = a + b + c , k = 1 2 a b a + b + c . f o r t r i p l e ( n a , n b , n c ) , T n = 1 2 n a n b , P n = n ( a + b + c ) , T n P n = n k . J u s t t o f u r t h e r i n v e s t i g a t e n o n p t i m i t i v e S M A L L E R t r i p l e s . ( 7 , 24 , 25 ) , g i v e s k = T P = 84 56 = 1.5 < 2.0 F o r n = 2 , T 2 P 2 = n k = 3 > 2. So no solution with this triple. ( 8 , 15 , 17 ) , g i v e s k = T 1 P 1 = 60 40 = 1.5 < 2 , s o j u s t a s a b o v e . N o s o l u t i o n h e r e a l s o . ( 5 , 12 , 13 ) , g i v e s k = T 1 P 1 = 30 30 = 1 < 2. S o i f n = 2 , n k = 2 , . . . . a n d ( 10 , 24 , 26 ) , . . . . . . t h e n T 2 = 120 < 180 w e g o t a b o v e . ( 3 , 4 , 5 ) , g i v e s k = T 1 P 1 = 6 12 = 0.5. S o i f n = 4 , n k = 4 . 5 = 2 , a n d ( 12 , 16 , 20 ) , T 4 = 96 < 180 w e g o t a b o v e . S o m a x i m u m a r e a 180 o n l y w i t h p r i m i t i v e t r i p l e s . Working ~out~ the~ list~ of ~Pythagorean~ Triples.\\ With~ all~ letters~ representing ~integers,~~\\ Primitive~ triple~ (a,b,c),~ P=perimeter, ~T=area,~ and~ k=\dfrac T P, ~a ~constant~ for~ a~ given~ (a,b,c). \\ Value ~of~ k~ increases~ as~ triangles ~become~ bigger.\\ First \ 7\ primitive\ triples\ are, \\ (3,4,5),\ \ \ (5,12,13),\ \ \ (8,15,17),\ \ \ (7,24,25),\ \ \ (9,40,41),\ \ \ (11,60,61),\ \ \ (12,35,37),\\ \color{#EC7300}{\text{We are interested in k=2, and maximum area. So, we start from the bigger triples.}\\ (12,35,37)\ gives\ \ \ \dfrac {T_1}{P_1}=\dfrac {210}{84}=2.5=k>2. \text{ So we should go for smaller triangle.}\\ (11,60,61)\ gives\ \ \ \dfrac {T_1}{P_1}=\dfrac {330}{132}=2.5=k>2. \text{ So we should still go for smaller triangle.}\\ (9,40,41)\ gives\ \ \ \dfrac {T_1}{P_1}=\dfrac {180}{90}=2. \ \ OK.\\ So\ the\ area\ required \ is\ \ \Large\ \ \ \color{#D61F06}{180}.}\\ \ \ \\ \\ For~triple~(a,b,c),~~ T=\frac 1 2 *a*b,~~P=a+b+c,\\ \therefore~k=\dfrac{ \frac 1 2 *a*b}{a+b+c}.\\ for~triple~(na,nb,nc),~~ T_n=\frac 1 2 *na*nb,~~P_n=n(a+b+c),\\ \therefore~\dfrac {T_n}{ P_n}=n*k.\\ Just\ to\ further~investigate\ non-ptimitive~SMALLER~triples. \\ (7,24,25),\ gives\ \ \ k=\dfrac T P=\dfrac {84}{56}=1.5<2.0\ \\ For~n=2,\ \ \dfrac {T_2}{P_2}=nk=3>2.\ \ \text{So no solution with this triple.}\\ (8,15,17),\ gives\ \ \ k=\dfrac {T_1}{P_1}=\dfrac {60}{40}=1.5<2,\ \ so \ just\ as\ above.\ No\ solution\ here\ also.\\ (5,12,13), \ gives\ \ \ k=\dfrac {T_1}{P_1}=\dfrac {30}{30}=1<2.\\ So\ if~n=2,~~\ \ nk=2,....\ and\ (10,24,26), ......then~T_2=\color{#3D99F6}{120<180\ we\ got~above.}\\ (3,4,5),\ gives\ \ k= \dfrac {T_1}{P_1}=\dfrac {6}{12}=0.5.\\ So\ if~ n=4,\ \ nk=4*.5=2 ,\ and\ (12,16,20),\ \ T_4=\color{#3D99F6}{96<180 \ ~we \ got~above.} \\ So~maximum~area~180~only~with~primitive~triples.

Rifath Rahman
Jan 13, 2015

I used the all the triplets and eventually 9-40-41 triplet matched

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...