Array of terms or double sum?

Calculus Level 2

1 2 2 + 2 2 3 + 3 2 4 + 4 2 5 + = 1 1 2 = 1 1 1 3 2 + 2 3 3 + 3 3 4 + 4 3 5 + = 1 2 2 = 1 4 1 4 2 + 2 4 3 + 3 4 4 + 4 4 5 + = 1 3 2 = 1 9 \begin{aligned} \dfrac{1}{\color{#3D99F6} 2^2}+ \dfrac{2}{2^3} +\dfrac{3}{2^4}+\dfrac{4}{2^5}+\cdots & = \dfrac{1}{\color{#3D99F6}1^2} =\dfrac{1}{1} \\\dfrac{1}{\color{#D61F06} 3^2}+ \dfrac{2}{3^3} +\dfrac{3}{3^4}+\dfrac{4}{3^5}+\cdots & = \dfrac{1}{\color{#D61F06}2^2} =\dfrac{1}{4} \\ \dfrac{1}{\color{#20A900} 4^2}+ \dfrac{2}{4^3} +\dfrac{3}{4^4}+\dfrac{4}{4^5}+\cdots & = \dfrac{1}{\color{#20A900}3^2} =\dfrac{1}{9} \\ &\vdots \end{aligned}

Basing on the infinite sums above, is it true that for all k 2 k \ge 2 1 k 2 + 2 k 3 + 3 k 4 + 4 k 5 + = 1 ( k 1 ) 2 ? \frac 1{k^2}+ \frac 2{k^3}+\frac 3{k^4} +\frac 4{k^5}+\cdots=\frac{1}{(k-1)^2}\,?

Bonus: Find the closed form, if it exists, of the following infinite sum for all n 2 n \ge 2 . n k n + 1 + n + 1 k n + 2 + n + 3 k n + 4 + n + 4 k n + 6 + \frac n{k^{n+1}} + \frac {n+1}{k^{n+2}} + \frac {n+3}{k^{n+4}} + \frac {n+4}{k^{n+6}} + \cdots

The problem is original.

Yes No

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Consider the following Maclaurin series for 1 < x < 1 -1<x<1 :

1 1 x = 1 + x + x 2 + x 3 + Differentiate both sides w.r.t. x 1 ( 1 x ) 2 = 1 + 2 x + 3 x 2 + 4 x 3 + Multiply both sides by x 2 x 2 ( 1 x ) 2 = x 2 + 2 x 3 + 3 x 4 + 4 x 5 + \begin{aligned} \frac 1{1-x} & = 1 + x + x^2 + x^3 + \cdots & \small \color{#3D99F6} \text{Differentiate both sides w.r.t. }x \\ \frac 1{(1-x)^2} & = 1 + 2x + 3x^2 + 4x^3 + \cdots & \small \color{#3D99F6} \text{Multiply both sides by }x^2 \\ \frac {x^2}{(1-x)^2} & = x^2 + 2x^3 + 3x^4 + 4x^5 + \cdots \end{aligned}

Putting x = 1 k x = \dfrac 1k , we have:

1 k 2 + 2 k 3 + 3 k 4 + = ( 1 k 1 1 k ) 2 = 1 ( k 1 ) 2 \begin{aligned} \frac 1{k^2} + \frac 2{k^3} + \frac 3{k^4} + \cdots & = \left(\frac {\frac 1k}{1-\frac 1k}\right)^2 = \boxed{\dfrac 1{(k-1)^2}}\end{aligned} .


Bonus :

S n = j = n j k j + 1 = j = 1 j k j + 1 j = 1 n 1 j k j + 1 = 1 ( k 1 ) 2 x 2 d d x ( x n 1 x 1 ) where x = 1 k = 1 ( k 1 ) 2 x 2 ( ( n 1 ) x n n x n 1 + 1 ( x 1 ) 2 ) = 1 ( k 1 ) 2 k n n ( k 1 ) 1 k n ( k 1 ) 2 = 1 ( k 1 ) 2 1 ( k 1 ) 2 + n ( k 1 ) + 1 k n ( k 1 ) 2 = n ( k 1 ) + 1 k n ( k 1 ) 2 \begin{aligned} S_n & = \sum_{j=n}^\infty \frac j{k^{j+1}} \\ & = \sum_{j=1}^\infty \frac j{k^{j+1}} - \color{#3D99F6} \sum_{j=1}^{n-1} \frac j{k^{j+1}} \\ & = \frac 1{(k-1)^2} - \color{#3D99F6} x^2 \frac d{dx} \left(\frac {x^n-1}{x-1} \right) & \small \color{#3D99F6} \text{where }x = \frac 1k \\ &= \frac 1{(k-1)^2} - x^2\left(\frac {(n-1)x^n-nx^{n-1}+1}{(x-1)^2} \right) \\ &= \frac 1{(k-1)^2} - \frac {k^n-n(k-1)-1}{k^n(k-1)^2} \\ &= \frac 1{(k-1)^2} - \frac 1{(k-1)^2} + \frac {n(k-1)+1}{k^n(k-1)^2} \\ &= \boxed{\dfrac {n(k-1)+1}{k^n(k-1)^2}} \end{aligned}

Note that when n = 1 n=1 , S 1 = 1 ( k 1 ) 2 S_1 = \dfrac 1{(k-1)^2} as expected.

@Naren Bhandari , why you have to write n = 2 n=2 and then n 1 k n + n k n + 1 + n + 1 k n + 2 + \dfrac {n-1}{k^n} + \dfrac {n}{k^{n+1}} + \dfrac {n+1}{k^{n+2}} + \cdots . Can't we just write 1 k 2 + 2 k 3 + 3 k 4 + \dfrac 1{k^2} + \dfrac 2{k^3} + \dfrac 3{k^4} + \cdots ?

Chew-Seong Cheong - 2 years, 6 months ago

Log in to reply

Well, Sir, maybe because, he wanted the closed form............

Aaghaz Mahajan - 2 years, 6 months ago

Log in to reply

No, just replace n n with 2, you will get the same expression.

Chew-Seong Cheong - 2 years, 6 months ago

Log in to reply

@Chew-Seong Cheong No no........I meant, closed form in terms of "n".......

Aaghaz Mahajan - 2 years, 4 months ago

Log in to reply

@Aaghaz Mahajan I can't remember what was the original form of the problem. The one above has been edited.

Chew-Seong Cheong - 2 years, 4 months ago

Yes, we can sir however, to make clear about the bonus problem I need to write. If you think it's good write as you mentioned, please edit for me.

Thank you !!

Naren Bhandari - 2 years, 6 months ago

Log in to reply

OK, I got it now

Chew-Seong Cheong - 2 years, 6 months ago

@Naren Bhandari , I have edited your problem and proved the bonus part.

Chew-Seong Cheong - 2 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...