Astro? No! Asteroid!

Calculus Level 2

0 1 ( 1 x 9995 ) 1 / 1999 d x 0 1 ( 1 x 1999 ) 1 / 9995 d x = ? \large \frac{ \displaystyle \int_0^1 (1-x^{9995})^{1/1999} \, dx } { \displaystyle \int_0^1 (1-x^{1999})^{1/9995} \, dx } = \ ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aditya Kumar
Aug 8, 2015

I 1 = 0 1 ( 1 x 9995 ) 1 / 1999 d x = 0 1 ( 1 t ) 1 / 1999 . 1 9995 . t 9994 9995 d t = Γ ( 2000 1999 ) Γ ( 1 9995 ) Γ ( 10000 + 1 9995 9995 ) = 1 I 2 = 0 1 ( 1 x 1999 ) 1 / 9995 d x = 0 1 ( 1 t ) 1 / 9995 . 1 1999 . t 1998 1999 d t = Γ ( 1 1999 ) Γ ( 9996 9995 ) Γ ( 10000 + 1 9995 9995 ) = 1 I 1 I 2 = 1 { I }_{ 1 }=\int _{ 0 }^{ 1 } (1-x^{ 9995 })^{ 1/1999 }\, dx\\ \quad \quad =\int _{ 0 }^{ 1 }{ (1-t)^{ 1/1999 } } .\frac { 1 }{ 9995 } .{ t }^{ \frac { -9994 }{ 9995 } }dt\\ \quad \quad =\frac { \Gamma \left( \frac { 2000 }{ 1999 } \right) \Gamma \left( \frac { 1 }{ 9995 } \right) }{ \Gamma \left( \frac { 10000+1-9995 }{ 9995 } \right) } =1\\ { I }_{ 2 }=\int _{ 0 }^{ 1 } (1-x^{ 1999 })^{ 1/9995 }\, dx\\ \quad \quad =\int _{ 0 }^{ 1 }{ (1-t)^{ 1/9995 } } .\frac { 1 }{ 1999 } .{ t }^{ \frac { -1998 }{ 1999 } }dt\\ \quad \quad =\frac { \Gamma \left( \frac { 1 }{ 1999 } \right) \Gamma \left( \frac { 9996 }{ 9995 } \right) }{ \Gamma \left( \frac { 10000+1-9995 }{ 9995 } \right) } =1\\ \therefore \frac { { I }_{ 1 } }{ { I }_{ 2 } }=1

Or you can interpret it as the area swept for x 9995 + y 1999 = 1 x^{9995} + y^{1999} = 1 . This works too!

Pi Han Goh - 5 years, 10 months ago

Log in to reply

Oh wow! I didn't think of it. Thanks!

Aditya Kumar - 5 years, 10 months ago

Log in to reply

No. Thank you. It didn't occur to me to use Beta Functions.

Pi Han Goh - 5 years, 10 months ago

Log in to reply

@Pi Han Goh Haha thanks!

Aditya Kumar - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...