An algebra problem by Pi Han Goh

Algebra Level 4

If A = n = 1 1 n ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) ( n + 5 ) , A = \displaystyle \sum_{n=1}^\infty \frac {1}{n(n+1)(n+2)(n+3)(n+4)(n+5)} , what is the value of 1 A ? \frac {1}{A}?


The answer is 600.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sudeep Salgia
May 21, 2014

Let T r = 1 r ( r + 1 ) ( r + 2 ) ( r + 3 ) ( r + 4 ) ( r + 5 ) \displaystyle T_{r} = \frac{1}{r(r+1)(r+2)(r+3)(r+4)(r+5)} .
Therefore, A = n = 1 1 n ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) ( n + 5 ) = n = 1 T n \displaystyle A = \sum_{n=1}^\infty \frac{1}{n(n+1)(n+2)(n+3)(n+4)(n+5)} = \sum_{n=1}^\infty T_{n}
Let us define a new sequence of variables, a r a_{r} .
a r = 1 r ( r + 1 ) ( r + 2 ) ( r + 3 ) ( r + 4 ) \displaystyle a_{r} = \frac{1}{r(r+1)(r+2)(r+3)(r+4)}
a r + 1 = 1 ( r + 1 ) ( r + 2 ) ( r + 3 ) ( r + 4 ) ( r + 5 ) \displaystyle \Rightarrow a_{r+1} = \frac{1}{(r+1)(r+2)(r+3)(r+4)(r+5)}
Hence,
a r a r + 1 = 1 r ( r + 1 ) ( r + 2 ) ( r + 3 ) ( r + 4 ) 1 ( r + 1 ) ( r + 2 ) ( r + 3 ) ( r + 4 ) ( r + 5 ) \displaystyle a_{r} - a_{r+1} = \frac{1}{r(r+1)(r+2)(r+3)(r+4)} - \frac{1}{(r+1)(r+2)(r+3)(r+4)(r+5)}


a r a r + 1 = r + 5 r r ( r + 1 ) ( r + 2 ) ( r + 3 ) ( r + 4 ) ( r + 5 ) \displaystyle \Rightarrow a_{r} - a_{r+1} = \frac{r+5-r}{r(r+1)(r+2)(r+3)(r+4)(r+5)}

a r a r + 1 = 5 × 1 r ( r + 1 ) ( r + 2 ) ( r + 3 ) ( r + 4 ) ( r + 5 ) = 5 T r \displaystyle \Rightarrow a_{r} - a_{r+1} = 5 \times \frac{1}{r(r+1)(r+2)(r+3)(r+4)(r+5)} = 5T_{r}

Therefore, we can write,
A = n = 1 T n = 1 5 × n = 1 ( a n a n + 1 ) \displaystyle A = \sum_{n=1}^\infty T_{n} = \frac{1}{5} \times \sum_{n=1}^\infty (a_{n} - a_{n+1}) , which being an easy telescopic series evaluates to a 1 5 = 1 600 \displaystyle \frac{a_{1}}{5} = \frac{1}{600}

Therefore, 1 A = 600 \displaystyle \boxed{\frac{1}{A} = 600}

can you explain second last line...???

Gautam Sagar - 7 years ago

Nice clear solution. +1)

Niranjan Khanderia - 4 years, 1 month ago
Jatin Yadav
May 21, 2014

n = 1 1 n ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) ( n + 5 ) \displaystyle \sum_{n=1}^{\infty} \dfrac{1}{n(n+1)(n+2)(n+3)(n+4)(n+5)}

= n = 1 1 5 ( ( n + 5 ) n n ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) ( n + 5 ) ) \displaystyle \sum_{n=1}^{\infty} \dfrac{1}{5} \bigg( \dfrac{(n+5) - n}{n(n+1)(n+2)(n+3)(n+4)(n+5)} \bigg)

= n = 1 1 5 ( 1 n ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) 1 ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) ( n + 5 ) ) \displaystyle \sum_{n=1}^{\infty} \dfrac{1}{5}\bigg(\dfrac{1}{n(n+1)(n+2)(n+3)(n+4)} - \dfrac{1}{(n+1)(n+2)(n+3)(n+4)(n+5)} \bigg)

= 1 5 × 5 ! 0 = 1 600 \dfrac{1}{5 \times 5!} - 0 = \dfrac{1}{600} (using astronomy, i.e. telescoping series :P)

hey can u explain the last step

Rishabh Jain - 7 years ago

Log in to reply

Yes, it is done by telescoping series. If you replace n n by n + 1 n+1 in 1 n ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) \dfrac{1}{n(n+1)(n+2)(n+3)(n+4)} , you get 1 ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) ( n + 5 ) \dfrac{1}{(n+1)(n+2)(n+3)(n+4)(n+5)} . Hence, middle terms cancel and you get the answer.

jatin yadav - 7 years ago

LOL I USE A CALC

math man - 6 years, 12 months ago

A = n = 1 1 n ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) ( n + 5 ) < n = 1 1 n 2 , b o t h a r e c o n v e r g e n t . A = n = 1 { B n + D n + 1 + F n + 2 + G n + 3 + E n + 4 + C n + 5 } . U s i n g c o v e r u p r u l e : B = + 1 120 , D = 5 120 , F = + 10 120 , C = 1 120 , E = + 5 120 , G = 10 120 A = 1 120 n = 1 { ( 1 n 1 n + 5 ) ( 5 n + 1 5 n + 4 ) + ( 10 n + 2 10 n + 3 ) } , A = 1 120 { n = 1 5 1 n n = 1 3 5 n + 1 + n = 1 1 10 n + 2 } + n = 1 5 1 n = 1 1 1 2 1 3 1 4 1 5 n = 1 3 5 n + 1 = 5 2 5 3 5 4 + n = 1 1 10 n + 2 = 10 3 F i n a l l y 120 A = + n = 1 5 1 n n = 1 3 5 n + 1 + n = 1 1 10 n + 2 = 1 5 . 1 A = 600. \color{#20A900}{ A = \displaystyle \sum_{n=1}^\infty \frac 1{n(n+1)(n+2)(n+3)(n+4)(n+5)} < ~\sum_{n=1}^\infty \frac 1{n^2}, ~both~are~convergent.\\ A = \displaystyle \sum_{n=1}^\infty\Big \{ \frac B n+\frac D{n+1}+\frac F{n+2}+\frac G{n+3}+\frac E{n+4}+\frac C {n+5} \Big \} .\\ Using~ cover~ up ~rule:-\\ B=+\frac 1 {120},~~~~D= - \frac 5 {120},~~~F=+\frac {10} {120},\\ C= - \frac 1 {120},~~~E=+ \frac 5 {120},~~~G= - \frac {10}{120}\\ \therefore~A = \displaystyle ~\frac 1 {120}~ \sum_{n=1}^\infty~\Bigg \{ \bigg(\frac 1 n-\frac 1{n+5}\bigg)-\bigg(\frac 5{n+1}-\frac 5{n+4} \bigg)+\bigg(\frac {10}{n+2}-\frac {10} {n+3}\bigg) \Bigg \} , \\ \therefore~A = \displaystyle ~\frac 1 {120}~ ~\Big \{ \sum_{n=1}^5 \frac 1 n - \sum_{n=1}^3\frac 5{n+1} + \sum_{n=1}^1\frac {10}{n+2} \Big \} \\ \displaystyle ~~+\sum_{n=1}^5 \frac 1 n~\quad \quad \quad=~~~~~~~~~\dfrac 1 1~\quad~~~~~\dfrac 1 2~~\quad~~~~\dfrac 1 3~~~\quad~~~\dfrac 1 4~~~\quad~~~\dfrac 1 5 \\ \displaystyle ~~-\sum_{n=1}^3\frac 5{n+1}~\quad~~~=~\quad~\quad~\quad~-\dfrac 52~\quad~-\dfrac 53~\quad~-\dfrac 5 4\\ \displaystyle ~+ \sum_{n=1}^1\frac {10}{n+2}\quad~\quad~=~~~\quad~~\quad\quad~~~~~~~~~~~~~~~~\dfrac {10} 3 \\ Finally~120*A=\displaystyle ~~+\sum_{n=1}^5 \frac 1 n - \sum_{n=1}^3\frac 5{n+1} + \sum_{n=1}^1\frac {10}{n+2}=\frac 1 5. \\ \therefore~~\dfrac 1 A=} \Huge \color{#D61F06}{600}. \\

link text

U s i n g c o v e r u p r u l e : B n = 0 = 1 1 2 3 4 5 = + 1 120 D n = 1 = 1 1 1 2 3 4 = 5 120 F n = 2 = 1 2 1 1 2 3 = + 10 120 G n = 3 = 1 3 2 1 1 2 = 10 120 E n = 4 = 1 4 3 2 1 1 = + 5 120 C n = 5 = 1 5 4 3 2 1 = 1 120 i = m f ( i ) = i = m k f ( i + k ) n = 1 ( 1 n 1 n + 5 ) = ( n = 1 5 1 n + n = 6 1 n ) n = 1 1 n + 5 = n = 1 5 1 n + ( n = 1 1 n + 5 n = 1 1 n + 5 ) a n d t h e o r i g i n a l s e r i e s i s c o n v e r g e n t , = n = 1 5 1 n . S i m i l a r l y n = 1 { 5 n + 1 5 n + 4 } = n = 1 3 ( 5 n + 1 ) a n d n = 1 { 10 n + 2 10 n + 3 } = n = 1 1 ( 10 n + 3 ) \color{#EC7300}{ *~~Using~ cover~ up ~rule:-\\ \displaystyle B_{n=~0} =\frac 1 {1*2*3*4*5}=~~~~~~~~~~~~+\frac {~1} {120}\\ \displaystyle D_{n=-1} =\frac 1 {-1*1*2*3*4}=~~~~~~~~ - \frac{~ 5} {120}\\ \displaystyle F_{n=-2} =\frac 1 {-2*-1*1*2*3}=~~~~ ~+ \frac {10} {120}\\ \displaystyle G_{n=-3} =\frac 1 {-3*-2*-1*1*2}= ~~- \frac {10} {120}\\ \displaystyle E_{n=-4} =\frac 1 {-4*-3*-2*-1*1}=~+\frac{~ 5} {120}\\ \displaystyle C_{n=-5} =\frac 1 {-5*-4*-3*-2*-1}= - \frac 1 {120} }\\ \color{#3D99F6}{* * \displaystyle \sum_{i=m}^\infty f(i) = \sum_{i=m-k}^\infty f(i+k)~~~~ \\ \therefore~\displaystyle \sum_{n=1}^\infty \Big ( \frac1 n-\frac 1{n+5} \Big)= \Big ( \sum_{n=1}^5 \frac1 n+\sum_{n=6}^\infty \frac1 n \Big ) - \sum_{n=1}^\infty\frac 1{n+5} \\ \displaystyle = \sum_{n=1}^5 \frac1 n + \Big ( \sum_{n=1}^\infty\frac 1{n+5} - \sum_{n=1}^\infty\frac 1{n+5} \Big) ~~~~~and~the~original~~ series ~~is ~convergent,\\ \displaystyle = \sum_{n=1}^5 \frac1 n .\\ Similarly~~\displaystyle~ \sum_{n=1}^\infty \Big \{\frac 5{n+1}-\frac 5{n+4} \Big \}= \sum_{n=1}^3 \Big (\frac 5{n+1} \Big ) ~\\ and ~ \displaystyle~ \sum_{n=1}^\infty \Big \{\frac {10}{n+2}-\frac{10} {n+3} \Big \}= \sum_{n=1}^1 \Big (\frac {10}{n+3} \Big ) }

Your working is incorrect. From the 3rd last line, you claimed that LHS = sum + sum + sum, but the latter 2 sums are divergent. Do you know how to fix this?

Pi Han Goh - 4 years, 2 months ago

Log in to reply

Probably it was the last incomplete solution you are referring to. Please see if it is correct now. Thank you.

Niranjan Khanderia - 4 years, 1 month ago

Log in to reply

No, I'm referring to your second blue color LaTeX line from the top.

Pi Han Goh - 4 years, 1 month ago

Log in to reply

@Pi Han Goh Please guide how to fix it. Thanks.

Niranjan Khanderia - 4 years, 1 month ago

Log in to reply

@Niranjan Khanderia Hint: For a series to converge, it's partial sum must converge. So for your first step, you need to show the partial sum converges (or is bounded).

Pi Han Goh - 4 years, 1 month ago

Log in to reply

@Pi Han Goh Thanks a lot. Yes now I fully understand how my solution was not complete. I am adding the correction to my solution.

Niranjan Khanderia - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...